

Draft Technical Report

Puget Sound Naval Shipyard (PSNS): Sediment Toxicity Monitoring Report May 2011

Prepared by
SSC Pacific Bioassay Laboratory
Molly Colvin, Gunther Rosen and Ignacio Rivera-Duarte (SSC Pacific)
Casey Bosse (SDSURF)

For

Puget Sound Naval Shipyard

October 2016

Data Quality Assurance:

- SSC Pacific Bioassay Laboratory is a certified Laboratory under the State of California Department of Health Services, Environmental Laboratory Accreditation Program (ELAP), Certificate No. 2601; State of Washington Department of Ecology, Laboratory ID. No. F893.
- All data have been reviewed and verified.
- Any test data discrepancies or protocol deviations have been noted in the summary report pages.

EXECUTIVE SUMMARY

Sediment toxicity testing was conducted using standardized protocols with the marine amphipods, *Leptocheirus plumulosus* and *Ampelisca abdita*, the polychaete worm, *Neanthes arenaceodentata*, (USEPA 1994 and Farrar and Bridges 2011, respectively), and Mediterranean mussel (*Mytilus galloprovincialis*) embryos (Anderson et al. 1996) to evaluate the environmental risk of sediment samples collected from Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IIMF). The results reported are from a single collection event (April 2011) and included a total of 6 test endpoints for samples from two areas of concern: nearshore areas adjacent to a major storm drain (PSO3) and an industrial outfall (PSO9).

The results from this study showed that Cu and Zn concentrations did not exceed levels associated with toxic effects to the test organisms. No toxicity was observed for either sediment samples, PSO3 or PSO9, for the whole sediment test with the marine amphipod, *Leptocheirus plumulosus*, or with the marine polychaete, *Neanthes arenaceodentata*. While, the whole sediment test with the marine amphipod, *Ampelisca abdita*, did not meet test acceptability criteria, the results from PSO9 showed a slightly significant increase in toxicity from the control, however it is unlikely toxicity was associated with metal exposure because the sediment, overlying water, pore water, and tissue residue metal concentrations were below ecological effect levels. The controls associated with the exposure at the sediment-water interface using embryos from the bivalve, *Mytilus galloprovincialis*, did not meet test acceptability criteria; however, all samples performed better than the control and a comparative analysis revealed that no toxicity was present for either of the sediment samples. The lines of evidence (LOE) for this study indicated non-toxic effects to test organisms with low potential for effects from Cu and Zn exposure.

TABLE OF CONTENTS

FXECUIT	IVA SIII	mmary	- 1
		tents	
List of	Tables		iv
List of	Figure	S	V
List of	Acrony	/ms	vi
1. In	troduc	ction	1
2. N	lateria	ls and Methods	2
2.1.	Tes	t Material	3
2.2.	Tes	t Organisms and Acclimation	4
2.3.	Тох	cicity Testing Procedures	5
2.	3.1.	Sediment-Water Interface Toxicity Tests	6
2.	3.2.	Whole Sediment Toxicity Tests	9
2.4.	Ger	neral Chemistry	12
2.5.	Tot	al and Dissolved Metal Measurements	12
2.	5.1.	Metal Concentrations in Water	12
2.	5.2.	Metal Concentration in Sediment	13
2.	5.3.	Metal Concentration in Tissues	14
2.	5.4.	Metal Concentration in DGTs	14
3. R	esults.		16
3.1.	Sec	liment-Water Interface Toxicity Results	16
3.2.	Wh	ole Sediment Toxicity Results	18
3.	2.1.	Leptocheirus plumulosus	18

3	3.2.2.	Ampelisca abdita	18
3	3.2.3.	Neanthes arenaceodentata	19
3.3	. Sedi	ment, Overlying Water, Pore Water and Tissue Residue Chemistry	21
3	3.3.1.	Overlying and Porewater Chemistry	21
4.	QA/QC		25
4. (QA/QC		25
4.1	. Refe	rence Toxicant Testing	25
5. S	Summary	/	26
6 F	Reference	es.	28

LIST OF TABLES

Table 2-1. Sediment Sample Collection and Receipt Times	4
Table 2-2. Specifications for 2-day Chronic Exposure Using the Mediterranean Mussel Embryo-La the Sediment-Water Interface	
Table 2-3. Specifications for 10-day Whole Sediment Acute Exposure Using the Marine Amp Ampelisca abdita and Leptocheirus plumulosus	-
Table 2-4. Specifications for 28-day Whole Sediment Chronic Exposure Using the Marine Poly Neanthes arenaceodentata (adapted from Farrar and Bridges 2011)	
Table 3-2. Summary of Statistical Results for the Whole Sediment Tests with <i>L. plumulosus</i> and <i>A. a.</i>	
Table 3-3. Summary of Statistical Results for 28-day Whole Sediment Test with <i>N. arenaceodentat</i>	a 19
Table 3-4. Sediment Chemistry Results – Bulk Sample	21
Table 3-5. Sediment Chemistry Results – < 63μm Fraction and SEM-AVS	21
Table 3-11. Overlying Water Chemistry Results – Ammonia (mg/L)	23
Table 3-12. Site Sediments – <i>Neanthes</i> Tissue Chemistry Results (dry weight)	23
Table 4-1. Results Summary for the Copper Reference Toxicant Tests Concurrently Conducted w NBPL RWM Samples Collected on May 11, 2016.	

LIST OF FIGURES

Figure 2-1. Schematic of generalized experimental design.	3
Figure 2-2. Toxicity endpoints for this study included a) polychaete (<i>Neanthes arenaceodentata</i>) survivand growth, b) amphipod (<i>Leptocheirus plumulosus</i>) survival, c) amphipod (<i>Ampelisca abdita</i>) survivand d) bivalve (<i>Mytilus galloprovincialis</i>) embryo-larval development and survival. Photos are not to sca	/al, ile.
Figure 2-3. Diagram of the sediment-water interface toxicity test	7
Figure 3-1. Mean percent normal and mean percent normal-alive <i>M. galloprovincialis</i> larvae for t sediment-water interface test.	
Figure 3-2. Mean percent survival of <i>L. plumulosus</i> and <i>A. abdita</i> . The star indicates statistical decreation from the respective laboratory control	
Figure 3-3. Mean percent survival of <i>N. arenaceodentata</i>	20
Figure 3-4. Mean growth of <i>N. arenaceodentata</i>	20

LIST OF ACRONYMS

AVS Acid Volatile Sulfide

CBR Critical Body Residue

CETIS Comprehensive Environmental Toxicity Information System

Cu Copper

DO Dissolved Oxygen

EC₅₀ Median Effective Concentration

ELAP Environmental Laboratory Accreditation Program

FSW Filtered Seawater

HDPE High Density Polyethylene

LC₅₀ Median Lethal Concentration

NBK Naval Base Kitsap

NOED No Observed Effect Dose

NOER No Observed Effect Residues

NPDES National Pollutant Discharge Elimination System

PSNS&IMF Puget Sound Naval Shipyard & Intermediate Maintenance Facility

SEM Simultaneously Extracted MetalSPAWAR Space and Naval Warfare

SQG Sediment Quality Guidelines

SSC Pac SPAWAR Systems Center Pacific

TST Test for Significant Toxicity

TU Toxic Unit

USEPA United States Environmental Protection Agency

1. Introduction

Copper (Cu) and zinc (Zn) are frequently elevated in marine sediments at coastal U.S. Navy facilities. Although these metals are naturally occurring, and essential for life, there are numerous anthropogenic sources of Cu and Zn that frequently result in elevated, potentially harmful, sediment concentrations. For the Navy, one of the largest sources of Cu and Zn in coastal embayments is from antifouling paint systems on ship hulls. Assessment and regulation of adverse effects in these sediments typically occurs via co-occurrence-based sediment quality guidelines (SQG) using total metal concentration (e.g. Long et al. 1995; Ecology 2013). The bioavailability and potential toxicity of Cu and Zn, however, is not necessarily related to total concentrations measured in bulk sediments, complicating appropriate application of SQGs for environmental regulation.

To address this issue, a research project "Compliance Tools Development for Metals in Antifouling Paints Program" was funded by the Navy to address short-term requirements and data gaps identified by the Navy and the program's technical work group (composed of scientific experts in government, industry, and academia). Funding was provided to support development of improved tools for assessing Cu and Zn bioavailability and toxicity in sediments located at selected Navy facilities, which included two sites at PSNS&IMF. The primary focus of the study was to build on the recent results published by others (e.g. Simpson et al. 2008; Strom et al., 2011), which suggest that expressing sediment Cu concentrations in terms of the metal concentration measured in the fraction of sediment equal or smaller to 63 µm (silt-size fraction of the sediment), normalized to the total organic carbon (TOC) content in the silt-size fraction, provides a vast improvement in the predictability of metal toxicity over current methods based on bulk sediment concentration, or TOC normalization of the bulk concentration. Successful demonstration and validation of this tool could vastly simplify and improve the assessment of contaminant bioavailability and toxicity in DoD sediments, potentially reducing costs associated with their future assessment and remediation.

It is widely recognized that the complexity of sediments and the presence of co-occurring contaminants render definitive identification of Cu or Zn as causal agents in contaminated sediments difficult. The intent of this study was to support the development of improved tools for assessment of Cu and Zn bioavailability and toxicity in sediments at Navy sites, and to support future advances on the ability to model metal toxicity in contaminated marine sediments. The bioavailability of metals is controlled by sediment geochemistry and metals toxicity can be predicted based on the analysis of Simultaneously Extracted Metals (SEM) and Acid Volatile Sulfides (AVS). Sediment quality benchmarks for the protection of benthic

¹ FY 2010 Department of Defense Appropriations Bill, PE 0603721N – Environmental Protection.

organisms from metal exposure have been developed based on the knowledge of AVS, the sum of the SEM (Σ SEM), and fraction of organic carbon (f_{OC}) in the sediment to determine sediments that would not be toxic to benthic organisms when (Σ SEM - AVS)/ $f_{OC} \le 130$ umol/g OC (US EPA 2005). However, under oxic and suboxic conditions, the Σ SEM can be more abundant than AVS, therefore this study was focused on relatively oxidized sediments exposed to four different benthic receptors commonly used in sediment quality assessment in North America. The results reported in this document are part of a larger study conducted to advance the state of the science for assessing metal toxicity in sediments (Colvin et al. in prep).

The NIWC Pacific Environmental Sciences Bioassay Laboratory (formerly SPAWAR Pacific Environmental Sciences Bioassay Laboratory) maintains laboratory certifications for bioassays from the Washington State Department of Ecology and the State of California Laboratory Accreditation Programs, employs qualified toxicologists, conducts external and internal audits, and maintains up-to-date standard operating procedures (SOPs) and good laboratory practices (GLP). Sediment toxicity testing using the marine amphipods Ampelisca abdita, Leptocheirus plumulosus, the polychaete Neanthes arenaceodentata, and embryos from the bivalve Mytilus galloprovincialis were performed to evaluate the environmental quality of sediments collected from Puget Sound Naval Shipyard & Immediate Maintenance Facility (PSNS&IMF). The amphipods and polychaete worms were tested in homogenized sediment samples, whereas bivalve embryos were exposed in sediment-water interface (SWI) toxicity tests described by Anderson et al. (2001). Samples were collected April 27, 2011 and testing was conducted at the SPAWAR Systems Center Pacific (SSC Pac) Bioassay Laboratory in San Diego, CA from May 3 through 31, 2011. Sediment chemistry evaluating the metal content as well as grain size and organic content was performed on the samples and is presented herein. Diffusive gradients in thin films (DGTs) were also concurrently deployed to assess the bioavailability of metals associated with the sediment porewater as an additional line of evidence to assess the environmental quality of the sediments tested.

2. MATERIALS AND METHODS

To meet the defined objectives for the project, this study included a series of tasks to characterize toxicity, physico-chemical parameters on overlying water, porewater, sediment, and labile metal concentrations using DGTs. An overview of the approach is shown in Figure 2-1.

Figure 2-1. Schematic of generalized experimental design.

2.1. Test Material

Sediments from PSNS&IMF and Naval Base Kitsap (NBK) located in Bremerton, WA were collected using standard sediment collection, sampling, and storage procedures (ASTM 2008). Sediment samples were collected using a Van Veen sampler to preserve the integrity of in situ conditions as best as possible. The sampling equipment was pre-cleaned, and scrubbed and rinsed with site water between grabs, with careful attention not to sample from the sides of the device to avoid cross-contamination. Sampling occurred on the top 5 cm of sediment, focusing on the oxic and suboxic layers. Sediment was composited in pre-cleaned 2 L HDPE wide-mouth bottles for later homogenization and coarse press-sieving (2 mm) at the laboratory to remove native organisms and potential predators. Additionally, intact cores were collected for the SWI toxicity tests using pre-cleaned polycarbonate core tubes following specifications in Anderson et al. (1996). SCUBA divers manually collected the intact core samples from the field by completely filling the tubes and capping the ends of the tube. Caps were taped and shipped to the SSC Pac Bioassay Laboratory in insulated ice chests containing blue ice. Upon receipt in the laboratory, sediments were stored in the dark at 4°C until use, and were used for experimentation as soon as possible. Sediment within the cores was dropped down to a 5 cm mark on the side of each core on the day prior to initiation. Test initiation was targeted for 48 h within collection, with a maximum holding time of two weeks (USEPA, 1994). Sample collection and receipt times are summarized in Table 2-1. Copies of chain of custody forms are provided in Appendix D.

Table 2-1. Sediment Sample Collection and Receipt Times.

Sample/ Station ID	Latitude	Longitude	Туре	Sample Collection Date	Sample Receipt Date/Time	Sample Receipt Temperature (°C)
DCO2 (NDV)	47.555783	-	Grab	4/27/2011 11:25	4/29/2011 09:00	6.1
PS03 (NBK)	47.555765	122.651925	Intact Core	4/27/2011 10:50	4/29/2011 09:00	6.1
DCOO (DCNC)	47.500127	-	Grab	4/27/2011 12:35	4/29/2011 09:00	6.1
PS09 (PSNS)	47.560127	122.636493	Intact Core	4/27/2011 12:20	4/29/2011 09:00	6.1

2.2. Test Organisms and Acclimation

Toxicity testing included the following experimental organisms: the two amphipods (*Ampelisca abdita* and *Leptocheirus plumulosus*), the polychaete (*Neanthes arenaceodentata*), and embryos from the bivalve embryos (*Mytilus galloprovincialis*).

Selection of test organisms was based on the desire to assess the responses in benthic invertebrates that differ in sensitivity to Cu and Zn, contaminant exposure route, and geographical location. *A. abdita* (Figure 2-2) is a suspension feeding, sediment ingesting amphipod that builds tubes out of sand grains (Redmond et al., 1994), while *L. plumulosus* is a free burrowing species (USEPA 1994). *N. arenaceodentata* (Figure 2-2) is a surface deposit feeding/predatory omnivorous polychaete, and builds mucoid tubes in surficial sediments (Dillon et al., 1993). All three species occur extensively in North America, are exposed to a combination of overlying water and porewater, in addition to sediment particles, detritus, and prey that might be an exposure source for Cu and Zn, and are frequently employed in testing for regulatory programs.

M. galloprovincialis embryo-larval development tests were incorporated in sediment-water interface (SWI) toxicity exposures (Anderson et al. 1996; Anderson et al. 2001). The relevancy of SWI tests in the assessment of sediment bioavailability and toxicity is high; 1) embryos are negatively buoyant and therefore directly exposed to sediment-associated contaminants during critical phases of cell differentiation; 2) the endpoint plays a major role in the development of saltwater WQC for Cu (USEPA 1995a); 3) the endpoint has served as the primary test for the development of site specific WQC for Cu in water effect ratio (WER) studies (e.g. Rosen et al. 2005, 2009; Earley et al. 2007), and for the development of predictive models of Cu toxicity in surface waters (e.g. Arnold et al. 2006; Chadwick et al. 2008); 4) the SWI toxicity test with *M. galloprovincialis* is a recommended test for the assessment of sediment quality as part of recently derived sediment quality objectives (SQOs) for the state of California (Bay et al. 2007); and 5) the lack of feeding during embryogenesis simplifies the interpretation of data towards the dissolved water concentration only.

Sub-adult *L. plumulosus*, approximately 2-4 mm in length, were obtained from Chesapeake Cultures, Inc. (Hayes, VA). *A. abdita*, approximately 0.71 – 1.18 mm in length, were obtained from Aquatic Research Organisms, Inc. (Hampton, NH). Juvenile *N. arenaceodentata* were obtained from a culture maintained by Aquatic Toxicology Support (Bremerton, WA). Gravid *M. galloprovincialis* were obtained from Carlsbad Aquafarm (Carlsbad, CA).

Amphipods and polychaetes were received at least one day prior to test initiation to allow for acclimation to appropriate test conditions (salinity, temperature, and lighting). Gravid mussels and urchins were received on the morning of the test initiation day. Mussel embryos were obtained from thermal-shock induced spawning from gravid mussels and sea urchins injected with potassium chloride to induce spawning. All organisms were visually inspected to confirm that they were of the proper size, and in good health, prior to use in toxicity testing.

Figure 2-2. Toxicity endpoints for this study included a) polychaete (*Neanthes arenaceodentata*) survival and growth, b) amphipod (*Leptocheirus plumulosus*) survival, c) amphipod (*Ampelisca abdita*) survival, and d) bivalve (*Mytilus galloprovincialis*) embryo-larval development and survival. Photos are not to scale.

2.3. Toxicity Testing Procedures

Testing was conducted in accordance with standard methods (USEPA 1994, USEPA 1995, ASTM 1996). The 10-day amphipod survival tests with whole sediment, the 28-day polychaete survival and growth test, and the 2-day sediment-water interface (SWI) bivalve embryo development test were conducted on the samples listed in Table 2-1. Negative controls consisting of sediment from the amphipod collection site was included in the 10-day whole sediment test. For the 2-day SWI test, a chamber control (screen tube) and a seawater negative control were also tested concurrently. Summaries of the test conditions are provided in Table 2-2, Table 2-3, and Table 2-4.

For both the whole sediment and sediment-water interface (SWI) toxicity tests, samples from the overlying water were collected at the beginning and end of the exposures, while porewater, DGT samplers and sediment samples were collected and analyzed at the test termination only. All test chambers were set up with sediment, water and aeration on the day prior to test initiation. Screen tubes for the SWI test were gently introduced to each core tube on the day of test initiation. Water quality parameters including pH, dissolved oxygen (DO), salinity, temperature and ammonia were measured in the overlying water prior to organism addition to ensure that conditions were within those tolerated. Daily observations of

water quality, aeration and sediment condition (e.g. anoxia, microbial growth, etc.) were made. All instruments used for water quality measurements were calibrated daily according to manufacturer specifications.

2.3.1. Sediment-Water Interface Toxicity Tests

The *M. galloprovincialis* embryo-larval development toxicity tests were conducted according to USEPA (1995b) and Anderson et al. (1996). Test conditions and acceptability criteria are summarized in Table 2-2. For the SWI test, early stage (< 4 hour old) embryos were placed at the interface using a screen tube (25 μ m mesh) that rests ~1 cm above a 5 cm sediment core (Figure 2-3). Developing larvae were exposed to contaminant flux from the sediment in both intact core and homogenized core tubes (2.5 inches in diameter), which were filled with 300 mL of overlying uncontaminated FSW. The number of surviving normal D-shaped larvae (% normal alive) was determined on an inverted microscope at the end of the test.

Each sample consisted of six replicates, four for organism exposure, one for destructive sampling of the sediments at the beginning of the test, and one for placement of a diffusive gradient in thin-film (DGT) to measure the profile of metal (Cu, Zn, Fe and Mn) concentrations in the porewater and overlying water. The mussel embryos never came into direct contact with the sediment and do not feed, so are exposed primarily to dissolved substances that partition out of the sediment. This test is required in newly established California SQOs (Bay et al. 2007; SSCWRP 2014), and the embryo-larval development endpoint of this species independently dictates ambient saltwater WQC for Cu (USEPA, 1995a) and was used in marine Cu BLM development (Chadwick et al. 2008), and therefore, provides a nice linkage between water and sediment metal bioavailability assessment.

At the end of the exposure period for the SWI toxicity test, screen tubes were carefully removed from the sediment and the embryos were washed into glass scintillation vials, and preserved in 10% buffered formalin for later microscopic examination.

Figure 2-3. Diagram of the sediment-water interface toxicity test.

Table 2-2. Specifications for 2-day Chronic Exposure Using the Mediterranean Mussel Embryo-Larvae at the Sediment-Water Interface.

Test Periods 5/3-5/5/2011 Test organism Mediterranean mussel – Mytilus galloprovincialis Test organism source Carlsbad Aquafarm, Carlsbad, CA Test duration; endpoints 48 hr; embryo-larval survival and development success (proportion normal-alive) Test solution renewal None Feeding None Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Undiluted sediment exposed as intact cores Overlying water volume 300 ml Test st selinity 30 ± 2 pt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber "determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria 2 80% mean normal-alive in control Reference toxicant Copper su				
Test organism source Carlsbad Aquafarm, Carlsbad, CA Test duration; endpoints 48 hr; embryo-larval survival and development success (proportion normal-alive) Test solution renewal None Feeding None Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration No. of organisms per chamber Chamber No. of organisms per (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test Periods	5/3-5/5/2011		
Test duration; endpoints Test solution renewal None Feeding None Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Overlying water volume 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/8 hr dark Aeration No. of organisms per chamber (determined in a pre-test trial) No. of replicates Overlying water source Test acceptability Test acceptability Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test organism	Mediterranean mussel – Mytilus galloprovincialis		
Test solution renewal None Feeding None Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Undiluted sediment exposed as intact cores Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber ~250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test organism source	Carlsbad Aquafarm, Carlsbad, CA		
Feeding None Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Undiluted sediment exposed as intact cores Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber "250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test duration; endpoints	48 hr; embryo-larval survival and development success (proportion normal-alive)		
Test Chamber size/type 1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh Test sediment depth 5 cm Test sediment manipulation Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Aeration No. of organisms per chamber Chamber No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test solution renewal	None		
Test sediment depth 5 cm Test sediment manipulation Undiluted sediment exposed as intact cores Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Feeding	None		
Test sediment manipulation Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/8 hr dark Aeration No. of organisms per chamber Chamber No. of replicates 5 Overlying water source Test acceptability criteria Reference toxicant Nould indicate sediment exposed as intact cores 300 ml 15 ± 1 °C 15 ± 1 °C 16 ml pight/8 (Ambient laboratory levels) 16 hr light/8 hr dark 10-20 μE/m²/s (Ambient laboratory levels) 16 hr light/8 hr dark 17 μα	Test Chamber size/type	1L glass mason jar w/ polycarbonate screen tubes with 25 μm mesh		
manipulation Undiluted sediment exposed as intact cores Overlying water volume 300 ml Test temperature 15 ± 1 °C Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber "250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test sediment depth	5 cm		
Test temperature $15 \pm 1 ^{\circ}\text{C}$ Test salinity $30 \pm 2 \text{ppt}$ Light quality $10\text{-}20 \mu \text{E/m}^2/\text{s}$ (Ambient laboratory levels) Photoperiod $16 \text{hr light/} 8 \text{hr dark}$ Aeration $16 \text{hr light/} 8 \text{hr dark}$ Aeration $16 \text{hr light/} 8 \text{hr dark}$ No. of organisms per chamber $16 \text{hr light/} 8 \text{hr dark}$ No. of organisms per chamber $16 \text{hr light/} 8 \text{hr dark}$ No. of replicates $16 \text{hr light/} 8 \text{hr dark}$ Overlying water source $16 \text{hr light/} 8 \text{hr dark}$ Test acceptability criteria $16 \text{hr light/} 8 \text{hr dark}$ Reference toxicant $16 \text{hr light/} 8 \text{hr dark}$ Copper sulfate, standard EPA laboratory method only; $16 \text{hr most} 16 \text{hr light/} 16 hr lig$		Undiluted sediment exposed as intact cores		
Test salinity 30 ± 2 ppt Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Aeration No. of organisms per chamber Chamber No. of replicates Overlying water source Test acceptability criteria Reference toxicant Reference toxicant Total Camber 10-20 μE/m²/s (Ambient laboratory levels) 10-20 μE/m²/s (Ambient laboratory levels) 10-20 μE/m²/s (Ambient laboratory levels) 10-20 μΕ/m²/s (Ambient laboratory hat provide second delivered through a Pasteur pipette), maintain >90% saturation 10-20 μΕ/m²/s (Ambient laboratory hat provide second delivered through a Pasteur pipette), maintain >90% saturation 10-20 μΕ/m²/s (Ambient laboratory hat provide second delivered through a Pasteur pipette), maintain >90% saturation success (determined in a pre-test trial) 10-20 μΕ/m²/s (Ambient laboratory hat provide second delivered through a Pasteur pipette), maintain >90% saturation success (determined in a pre-test trial) 10-20 μΕ/m²/s (Ambient laboratory hethod > 90% fertilization success (determined in a pre-test trial) 10-20 μΕ/m²/s (Ambient laboratory hethod > 90% fertilization success (determined in a pre-test trial) 10-20 μΕ/m²/s (Ambient laboratory hethod > 90% fertilization success (determined in a pre-test trial) 10-20 μΕ/m²/s (Ambient laboratory hethod only; 48 hr water only exposure; five concentrations (5 replicates each)	Overlying water volume	300 ml		
Light quality 10-20 μE/m²/s (Ambient laboratory levels) Photoperiod 16 hr light/ 8 hr dark Aeration Aeration No. of organisms per chamber Coverlying water source Test acceptability criteria Reference toxicant Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation 7250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test temperature	15 ± 1 °C		
Photoperiod 16 hr light/ 8 hr dark Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber ~250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Test salinity	30 ± 2 ppt		
Aeration Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation No. of organisms per chamber No. of replicates Soverlying water source Test acceptability criteria Reference toxicant Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation *250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) *5 Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory *280% mean normal-alive in control Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Light quality	10-20 μE/m²/s (Ambient laboratory levels)		
Aeration Pasteur pipette) , maintain >90% saturation No. of organisms per chamber ~250 eggs, appropriate sperm density to provide > 90% fertilization success (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Photoperiod	16 hr light/ 8 hr dark		
chamber (determined in a pre-test trial) No. of replicates 5 Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Aeration			
Overlying water source Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)				
Test acceptability criteria ≥ 80% mean normal-alive in control Reference toxicant Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	No. of replicates	5		
criteria ≥ 80% mean normal-alive in control Copper sulfate, standard EPA laboratory method only; 48 hr water only exposure; five concentrations (5 replicates each)	Overlying water source			
five concentrations (5 replicates each)	· · · · · · · · · · · · · · · · · · ·	≥ 80% mean normal-alive in control		
Test protocol EPA 600/R-95/136 (USEPA 1995)	Reference toxicant			
	Test protocol	EPA 600/R-95/136 (USEPA 1995)		

2.3.2. Whole Sediment Toxicity Tests

The *A. abdita* and *L. plumulosus* exposures were conducted using minor modifications of standard methods (USEPA, 1994). Recently, a new protocol was published for *N. arenaceodentata* (Farrar and Bridges, 2011) that employs an earlier life stage (≤ 7 day old emergent juveniles) than other standard methods with this species (e.g. ASTM 2000). This method was demonstrated to be considerably more sensitive than methods employing 2-3 week old organisms in comparative round robin testing. In addition, the growth endpoint using the new procedure described by Farrar and Bridges (2011) was among the most sensitive in a multi-species comparison of acute and chronic toxicity in marine sediments (Greenstein et al., 2008).

Summaries of the test conditions and test acceptability criteria for the whole sediment toxicity tests are shown in Table 2-3 and Table 2-4. Briefly, the amphipod tests included approximately 150g of homogenized wet sediment in 1 L glass jars, with 700 mL of overlying uncontaminated 0.45 µm FSW. The polychaete tests contained 75 g of wet sediment and 175 mL of FSW (Farrar and Bridges, 2011). Overlying water in all tests was continuously aerated with filtered laboratory air at a rate of approximately 100 bubbles per minute. A 24-h equilibration period with the overlying water was allowed prior to addition of test organisms (Day 0). Exposures were static for *A. abdita* and *L. plumulosus* for 10 days (acute exposure), while weekly renewals of the overlying water were made in the 28 day exposures with *N. arenaceodentata* (chronic exposure). The organisms were recovered on 0.5 mm sieves at the end of the test and enumerated for survival. For *N. arenaceodentata*, recovered organisms were purged overnight in FSW prior to drying for growth assessment, and then transferred into microcentrifuge vials for acid digestion (nitric acid under heat) and measurement of Cu and Zn in the tissues (Rosen et al., 2008).

Table 2-3. Specifications for 10-day Whole Sediment Acute Exposure Using the Marine Amphipods Ampelisca abdita and Leptocheirus plumulosus.

Tost Pariods	E/2 12/2011
Test Periods	5/3-13/2011
Test organism	Marine amphipods – Ampelisca abdita and Leptocheirus plumulosus
Test organism size at initiation	Adult 3-5 mm
Test organism source	Aquatic Research Organisms, Inc. and Chesapeake Cultures, Inc.
Test duration; endpoint	10-day; survival
Test solution renewal	None
Feeding	None
Test Chamber size/type	1L glass mason jar
Test sediment depth	5 cm (approximately 150 g)
Test sediment manipulation	Homogenized and sieved to <2.0 mm
Overlying water volume	700 ml
Control sediment source	Sediment from amphipod collection site, Yaquina Bay, OR
Test temperature	15 ± 1 °C
Test salinity	30 ± 2 ppt
Light quality	Ambient laboratory illumination
Photoperiod	Continuous light (24 hr), ambient laboratory lighting
Aeration	Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation
No. of organisms per chamber	20
No. of replicates	Leptocheirus – 3; Ampelisca - 4
Overlying water source	Filtered (0.45 µm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory
Test acceptability criteria	≥ 90% mean survival in control sediment
Reference toxicant	Copper sulfate, standard EPA laboratory method only; 96-h water only exposure; five concentrations (4 replicates each)
Test protocol	EPA 600/R-94/025 (USEPA 1994)
	1

Table 2-4. Specifications for 28-day Whole Sediment Chronic Exposure Using the Marine Polychaete *Neanthes arenaceodentata* (adapted from Farrar and Bridges 2011).

Test Periods	5/3-31/2011
Test organism	Marine polychaete – Neanthes arenaceodentata
Test organism size at initiation	Juvenile ≤ 7 d post-emergent
Test organism source	Aquatic Toxicology Support
Test duration; endpoint	28-day; survival and growth
Test solution renewal	50% once weekly
Feeding	Twice weekly, 2 mg of ground Tetramin © per organism
Test Chamber size/type	400 mL glass beaker
Test sediment depth	2 cm (approximately 75 g)
Test sediment manipulation	Homogenized and sieved to <2.0 mm
Overlying water volume	175 ml
Control sediment source	Sediment from amphipod collection site, Yaquina Bay, OR
Test temperature	15 ± 1 °C
Test salinity	30 ± 2 ppt
Light quality	Ambient laboratory illumination
Photoperiod	Continuous light (24 hr), ambient laboratory lighting
Aeration	Laboratory filtered air, continuous (1-2 bubbles per second delivered through a Pasteur pipette), maintain >90% saturation
No. of organisms per chamber	20
No. of replicates	10
Overlying water source	Filtered (0.45 μm) natural seawater collected from near the mouth of San Diego Bay at SSC PAC Laboratory
Test acceptability criteria	≥ 80% mean survival in control sediment and positive growth in control organisms
Reference toxicant	Copper sulfate, standard EPA laboratory method only; 96-h water only exposure; five concentrations (4 replicates each)
Test protocol	Farrar and Bridges (2011)

2.4. General Chemistry

All glassware, plasticware and associated equipment were cleaned thoroughly prior to use by soaking in 10% nitric acid (HNO₃) for 24 h, followed by rinsing in de-ionized water. Glassware used as test chambers also underwent a 24 h soak in 30 ppt 0.45 μ m FSW.

2.5. Total and Dissolved Metal Measurements

Assessment of metal concentrations was made following methodology recommended by USEPA, including use of trace metal clean sampling techniques in the collection, handling and analysis (USEPA, 1996). Water and porewater samples were collected in 30-mL acid-cleaned low-density polyethylene bottles. Samples were acidified to pH \leq 2 with quartz still-grade nitric acid (Q-HNO₃) in a High Efficiency Particle Air (HEPA) class-100 all polypropylene working area.

2.5.1. Metal Concentrations in Water

Overlying Water Sample Collection

Overlying water samples were taken from test chambers at the beginning and end of exposure periods (i.e. time zero and time final). The water samples were decanted from the test chamber using a peristaltic pump, without disturbing the sediment, into acid-cleaned 30 mL high density polyethylene (HDPE) bottles. Samples were collected in duplicate from each test chamber; one replicate was acidified to measure total metals, while the other replicate was filtered at a clean bench with a 0.45 μ m filter attached to the pump tubing, and then acidified for quantification of dissolved metals. Each water sample was acidified to a pH of \leq 2 with 50 μ L of QHNO₃.

Pore Water Sample Collection

Pore water samples were collected from the test sediments at test termination only. After the overlying water was sampled and/or discarded, replicates of each sediment treatment were combined into a centrifuge tube in an anaerobic chamber. The combined replicate samples were ultra-centrifuged at 9000 rpm for 15 minutes leaving the pore water as a supernatant. The pore water was sampled from the centrifuge tube using a peristaltic pump with a 0.45 μ m filter into acid cleaned 15 mL HDPE bottles. Each water sample was acidified to a pH \leq 2 with 50 μ L of QHNO₃.

Overlying Water and Porewater Metal Analysis

Metal concentrations in overlying and pore water samples were measured using in-line pre-concentration Flow Injection Analysis and a Perkin-Elmer SCIEX ELAN DRC II inductively coupled plasma with detection by mass spectrometry (ICP-MS; USEPA, 1994b). Each sample first ran through a Flow Injection Analysis System (FIAS) to pre-concentrate the metals, and to reduce the salt-content of the sample. The sample was then directly transferred into the Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for quantification. Blanks were analyzed every 5 samples to make sure the system was clean and to give a

reference point for the background level. A Standard Reference Material (SRM) was analyzed after each blank to ensure that the instrument was measuring accurately and precisely. The blank was NASS 2 (open ocean sea water) and the SRM was CASS 4 (coastal seawater) both from the National Research Council of Canada.

When deemed necessary for samples with high metal concentrations, samples were diluted with 0.1 N Q-HNO₃ made up in high-purity (18 M Ω cm⁻¹) water in order to minimize matrix related interferences. The diluted samples were injected directly into the ICP-MS via a Perkin-Elmer Autosampler 100. Analytical standards were made in CASS4 Nearshore Seawater Reference Material for Trace Metals, National Research Council Canada, with Perkin-Elmer multi-element standard solution (PEMES-3) diluted in 1N Q-HNO₃, and were analyzed at the beginning and end of the run. The analysis also included measurement of the Standard Reference Material (SRM) 1643e from the National Institute of Standards & Technology (NIST), and analytical blanks made up of 1N Q-HNO₃ after every five samples. A coefficient of variation (CV) of \leq 5% for replicate measurements was observed, as well as a recovery within 15% for direct injection of SRM 1643e. The method limit of detection is defined as three times the standard deviation of the analytical blanks made of 1N Q-HNO₃.

2.5.2. Metal Concentration in Sediment

Sediment Sample Collection

Sediment samples were collected at the test termination from exposure beakers for both sediment samples. After overlying and pore waters were removed from multi-replicate composites, approximately 120 mL sediment was transferred to a HDPE bottle for bulk metal analysis. The remaining sediment was wet-sieved through a 63 μ m sieve, and transferred to a separate 120 mL HDPE bottle for metal and TOC analysis of the <63 μ m size fraction (Spadaro et al. 2008).

<u>Sediment Metal analysis – ICP-MS and SEM-AVS</u>

Bulk sediment samples were analyzed using both ICP-MS and SEM-AVS. The <63 µm fraction was only analyzed by ICP-MS. ICP-MS analyses were conducted at SSC Pacific. SEM-AVS analyses were conducted by the Engineer Research and Development Center Laboratory (ERDC).

For ICP-MS analyses, empty 30 mL HDPE bottles were labeled and dried at 60°C in a drying oven for at least 24 hours. The dried bottles were then weighed and the tare mass (g) recorded. Enough wet sediment to get a dry mass of approximately 0.25 g was transferred to each 30 mL bottle. The bottles were placed in the oven with no caps at 60°C for at least 24 hours, followed by verification of complete dryness. The bottles with dry sediment were weighed again and the mass (g) was recorded. One mL of concentrated trace metal grade (TMG) Hydrochloric Acid (HCL) and 0.5 mL of concentrated TMG HNO₃ were added to each sediment sample. The samples were allowed to digest for 24 hours at room temperature capped loosely and put on a warm heating plate (\approx 60°C) for at least 1 hr. Subsequently, about 30 mL of 1 N TMG HNO₃ was added to each sample and the final mass (g) recorded. After particles were allowed to settle,

sample dilutions of the overlying digestate were made. A 5-fold dilution of each sample was made before metal concentration analysis by transferring 2 mL of sample digestate solution (no particles) to a 15 mL centrifuge tube and adding 8 mL of 1N TMG HNO₃ for a total volume of 10 mL.

Metal concentrations were measured using an ICP-Optical Emissions Spectrometer (ICP-OES). Three duplicate samples were chosen at random for each run. For every 5 samples, a blank was run to make sure the system was clean and to give a reference point for the background level of metals. A SRM was run after each blank to ensure that the instrument was measuring accurately and precisely. The blank was either 1N TMG HNO₃ or 18 M Ω cm⁻¹ water and the SRM was 1643e (trace metals in water) from the National Bureau of Standards. In addition, six blanks were prepared from empty 30 mL HDPE bottles which were treated in the same manner as the sediment digestions. All acid additions and dilutions were carried out identically.

2.5.3. Metal Concentration in Tissues

<u>Tissue Collection and Analysis</u>

Tissue from the *Neanthes* whole sediment test were analyzed for metal tissue concentrations following the exposure period of 28 d. At the termination of the bioassay, organisms were allowed to depurate for a minimum of 24 hr. Organisms were examined following the depuration period for debris in their gut and were gently palpated to further remove debris. Organisms were gently rinsed with Milli-Q DI water to remove salts, blotted dry, and then placed into pre-cleaned, dried and pre-weighed polypropylene microcentrifuge tubes (1.5 mL). Wet tissue was then dried at 60°C. Once the tissues were dry, the vials were weighed again. Concentrated Q-HNO3 (50 μ L) was added to each vial making sure to cover the tissue as much as possible. The vials were allowed to digest for at least three days at room temperature at a clean bench. Finally, 1500 μ L 1N Q-HNO3 was added to each vial and the vial weighed again. One mL of acid was taken from each digestion and analyzed by ICP-MS.

2.5.4. Metal Concentration in DGTs

DGTs were positioned in surrogate test vessels for each of the sediment types, allowing for both DGT determination of overlying water and pore water Cu, Zn, Fe, and Mn measurements in the oxic and suboxic zones. Suboxic zones were defined as those layers of sediment where either or both Fe or Mn was present in the (0.45 μ m) porewater.

DGT Collection and Analysis

At test termination, DGTs were recovered and rinsed with DI water. The DGT gel was extracted from the plastic housing and the DGT gel was set at the bottom of pre-cleaned, dried and weighed centrifuge tubes. The gel was then allowed to dry in a class-100 clean bench for several days at room temperature. Once dry, the vials were weighed again. Concentrated Q-HNO3 (50 μ L) was added to each vial making sure to cover the DGT gel film as much as possible. The vials were allowed to digest for at least three days at room

temperature in the clean bench. Finally, 1500 μ L 1N Q-HNO3 was added to each vial and the vial weighed again. One mL of acid was taken from each digestion and analyzed by ICP-MS.

3. RESULTS

Summaries of statistical, toxicity, and raw test results for the bioassay tests are provided in Tables 3-1 through Table 3-3. Analytical chemistry results are provided for bulk sediment (Table 3-4), sediment <63 um (Table 3-5), overlying and pore water chemistry (Tables 3-7 through 3-10), overlying water ammonia (Table 3-11) and tissue residue results (Table 3-12). Complete statistical summaries and bench water quality sheets are provided in Appendix A.

3.1. Sediment-Water Interface Toxicity Results

The chamber control associated with the SWI exposures with M. galloprovincialis was slightly outside of test acceptability criteria at 75.6% (acceptability criteria: \geq 80% mean normal-alive). However, the tests were deemed acceptable based on the responses of the site sediments all performing better than the control. All water quality parameters were within the recommended range for the duration of the test. Table 3-2 summarizes the results of the SWI tests with M. galloprovincialis. Mean normal ranged from 80 to 95 percent and mean normal-alive ranged from 79 to 95 percent (Table 3-2). For statistical analyses, each sample was compared to the chamber control using the statistical software Comprehensive Environmental Toxicity Information System (CETIS) v1.8.7.16 (Tidepool 2012). No significant differences were observed for intact cores or homogenized field samples relative to the chamber control tested (all p-values >0.05).

Table 3-1. Summary of Statistical Results for the Sediment-Water Interface Test.

Station ID	Mean % Normal (SD)	% Difference from Control	p-value	Mean % Normal- Alive (SD)	% Difference from Control	p-value
Negative Control – Screen Tube	80.4 (7.3)	-	-	75.6 (13.8)	-	-
PS-03 Intact Core	89.4 (8.1)	11.2	0.9909	85.8 (11.1)	13.5	0.9642
PS-03 Homogenized	95.8 (2.0)	19.2	0.9996	97.4 (3.4)	28.8	0.9994
PS-09 Intact Core	92.0 (4.6)	14.4	0.9986	79.1 (11.9)	4.6	0.8005
PS-09 Homogenized	92.5 (3.3)	15.1	0.9988	83.4 (11.4)	10.3	0.9225

Figure 3-1. Mean percent normal and mean percent normal-alive *M. galloprovincialis* larvae for the sediment-water interface test.

3.2. Whole Sediment Toxicity Results

3.2.1. Leptocheirus plumulosus

The control associated with the 10-day whole sediment test with *L. plumulosus* met test acceptability criteria of 90 % survival. All water quality parameters measured were within the recommended range for the duration of the test. Survival was 86 and 93 % for samples PS-03 and PS-09, respectively. Each sample was compared statistically against the laboratory control sediment that was tested concurrently using a CETIS. No significant differences were observed in any of the sediment samples tested compared to the control (all p-values >0.05, Table 3-3, Figure 3-2. Mean percent normal and mean percent normal-alive *M. galloprovincialis* larvae for the sediment-water interface test.).

3.2.2. Ampelisca abdita

For the 10-day whole sediment test with *A. abdita*, dramatic mortality was observed two days into the exposure period. It was decided that ten additional organisms would be added to two of the four replicates (replicates A & B) and based on the average number of mortalities observed across all replicates a normalization of the initial number of organisms in each replicate would be made; 26 for the A & B replicates and 16 organisms for the C & D replicates. The *A. abdita* toxicity test as a whole did not meet test acceptability criteria for the mean survival (90% survival) in the controls. However, samples were compared against the control for interest's sake. Sample PS-09 was significantly decreased from the control sediment (p = 0.0493, Table 3-3, Figure 3-2. Mean percent normal and mean percent normal-alive *M. galloprovincialis* larvae for the sediment-water interface test.) and while PS-03 did not show significance relative to the control, the trend for toxicity is similar to PS-09.

Table 3-1. Summary of Statistical Results for the Whole Sediment Tests with *L. plumulosus* and *A. abdita*.

	Le	ptocheirus plumu	ılosus	Ampelisca abdita			
Station ID	Mean % Survival (SD)	% Difference from Control	p-value from Student's t- test	Mean % Survival (SD)	% Difference from Control	p-value from Student's t- test	
Laboratory Control ^A	90.0 (8.7)	-	-	78.5 (17.9)	-	-	
PS-03 Homogenized	86.7 (2.9)	-3.7	0.2317	59.3 (12.1)	-24.5	0.0686	
PS-09 Homogenized	93.3 (5.8)	3.7	0.6788	58.9 (4.4)	-25.0	0.0493	

A – Control sediment was sediment from Seguim Bay.

Values in **bold** indicate a statistically significant decrease compared to the control.

Figure 3-2. Mean percent survival of *L. plumulosus* and *A. abdita*. The star indicates statistical decrease from the respective laboratory control.

3.2.3. Neanthes arenaceodentata

The control associated with the 28-day whole sediment test with *N. arenaceodentata* met test acceptability criteria of 90 % survival and positive growth. All water quality parameters measured were within the recommended range for the duration of the test. Survival was 100 % for both samples (Table 3-3). Growth was 5.1 and 4.7 mg for PS-03 and PS-09, respectively. Each sample was compared statistically against the laboratory control sediment that was tested concurrently using CETIS. No significant differences were observed in any of the sediment samples tested compared to the control for either survival or growth (all p-values >0.05, Table 3-3, Figure 3-3).

Table 3-2. Summary of Statistical Results for 28-day Whole Sediment Test with N. arenaceodentata.

		Survival		Growth			
Station ID	Mean % Survival (SD)	% Difference from Control	p-value from Student's t- test	Mean Growth (mg) (SD)	% Difference from Control	p-value from Student's t- test	
Laboratory Control ^A	90.0 (31.6)	-	-	4.928	-	-	
PS-03 Homogenized	100.0 (0.0)	11.1	1.000	5.106	3.6	0.5905	
PS-09 Homogenized	100.0 (0.0)	11.1	1.000	4.682	-4.99	0.3840	

Figure 3-3. Mean percent survival of *N. arenaceodentata*.

Figure 3-4. Mean growth of N. arenaceodentata.

3.3. Sediment, Overlying Water, Pore Water and Tissue Residue Chemistry

Results for sediment chemistry, for dissolved and particulate phases of metals in overlying water and pore water, and tissue residues are summarized below. Bulk Sediment Chemistry

As stated previously, bulk sediment samples were collected following decanting of the overlying waters. Bulk samples were analyzed for Cu and Zn and total organic carbon (TOC). Remaining sediment was then processed through a $63~\mu m$ sieve for additional metal and TOC analysis. Bulk sediment samples were also evaluated using SEM-AVS by the Army's research lab ERDC and results were normalized to the amount of organic carbon.

The results showed that sediment concentrations of Cu and Zn did not exceed WA SQGs (Ecology 2013), organic carbon normalized SQGs for bulk and <63 um size fractions (Simpson et al. 2008), or threshold of effects for (Σ SEM-AVS)/ f_{oc} (US EPA 2005).

Table 3-3. Sediment Chemistry Results – Bulk Sample.

Sample ID	Silt & Clay <63µm (%)	рН	тос (%)	Cu (mg/kg)	Zn (mg/kg)	Bulk Sed/TOC Cu (mg/g OC)	Bulk Sed/TOC Zn (mg/g OC)
PS03	71.3	7.26	2.9	199.6	232.0	6.9	8.0
PS09	81.0	7.42	2.6	213.9	258.7	8.2	10.0

Table 3-4. Sediment Chemistry Results – < 63μm Fraction and SEM-AVS.

Sample ID	тос (%)	Cu (mg/kg)	Zn (mg/kg)	<63µm/TOC Cu (mg/g OC)	<63μm/TOC Zn (mg/g OC)	ΣSEM-AVS (μmol/g)	(∑SEM-AVS)/f _{oc}
PS03	3.5	213.1	229.5	6.1	6.6	-8.96	-309
PS09	4.4	223.7	260.5	5.1	5.9	-12.1	-466

3.3.1. Overlying and Porewater Chemistry

The results for chemical analysis of overlying water (OW) and pore water (PW) showed that Cu and Zn did not exceed chronic water quality standards (Ecology 2016)

Table 3-6. Overlying and Porewater Chemistry Results – L. plumulosus.

	c	verlying Wat	Pore Water			
Sample ID	Total Cu (μg/L) Dissolved Cu (μg/L)		Total Zn (μg/L)	Dissolved Zn (µg/L)	Dissolved Cu (μg/L)	Dissolved Zn (μg/L)
PS03	1.2	0.8	3.0	7.2	0.8	10.4
PS09	1.7	0.8	9.4	6.1	0.4	1.0

Table 3-7. Overlying and Porewater Chemistry Results – A. abdita.

	0	verlying Wat	Pore Water			
Sample ID	Total Cu (μg/L)	Cu		Dissolved Zn (μg/L)	Dissolved Cu (µg/L)	Dissolved Zn (µg/L)
PS03	1.1	0.8	17.2	20.8	0.8	10.4
PS09	1.6	1.0	17.6	13.4	0.4	1.0

Table 3-8. Overlying and Porewater Chemistry Results – *N. arenaceodentata*.

	(Overlying Wat	er – Time F	Pore Water			
Sample ID	Total Cu (μg/L)	Dissolved Cu (µg/L)	Total Zn (μg/L)	Dissolved Zn (µg/L)	Dissolved Cu (μg/L)	Dissolved Zn (µg/L)	DOC (mg/L)
PS03	1.2	0.8	1.8	0.5	0.4	ND	<5.0
PS09	0.8	0.8	3.1	3.1	0.4	16.5	<5.0

Table 3-9. Overlying Water Chemistry Results – *M. galloprovincialis*. (C indicates intact core, H indicates homogenated core)

	Overlying Water – Time 0						Overlying Water – Time Final			
Sample ID	Total Cu (μg/L)	Dissolv ed Cu (μg/L)	Total Zn (μg/L)	Dissolv ed Zn (μg/L)	Total Cu (μg/L)	Dissolv ed Cu (μg/L)	Total Zn (μg/L)	Dissolv ed Zn (μg/L)	DOC (mg/L)	TOC (mg/L)
PS03 - C	1.4	0.7	4.5	4.3	1.7	0.6	2.4	0.4	<0.5	<0.5
PS03 - H	1.3	0.6	1.7	1.9	2.6	0.6	3.1	ND	<0.5	<0.5
PS09 - C	0.9	0.6	2.4	2.2	1.3	0.6	2.2	ND	<0.5	<0.5
PS09 - H	1.1	0.6	1.6	2.5	4.7	0.6	5.3	ND	<0.5	<0.5

Table 3-10. Porewater Chemistry Results – M. galloprovincialis.

Sample ID	Dissolved Cu (μg/L)	Dissolved Zn (μg/L)	DOC (mg/L)
PS03 - C	0.3	153.6	168.0
PS03 - H	0.3	68.6	<0.5
PS09 - C	0.2	49.4	2600
PS09 - H	0.3	32.7	0.6

Table 3-5. Overlying Water Chemistry Results – Ammonia (mg/L).

Sample ID		Initiation		Termination			
Sumple 15	SWI test		28-d whole sediment test	SWI test	10-d whole sediment test*	28-d whole sediment test	
PS03 - C	2.2	-	-	1.0	-	-	
PS03 - H	0.2	0.7	1.1	ND	1.6/ND	ND	
PS09 - C	0.5	-	-	0.4	-	-	
PS09 - H	1.3	ND	0.4	1.1	1.6/ND	0.12	

^{* -} first and second values are for *L. plumulosus test* and *A. abdita* tests, respectively ND – Non-detect

Tissue residue concentrations in Neanthes exposed to NBK and PSNS sediments showed that the worms exposed to sediment from PS03 accumulated about twice as much Cu and Zn than the worms exposured to sediments from PS09. However, the Cu results were below the critical body residues (CBR) or whole body no-observed-effect-residues (NOER) of 21 and 23 mg/kg dw, determined for M. galloprovincialis and S. purpuratus, respectively (Rosen et. 2008). The tissue residue concentrations for Zn were also lower than tissue concentrations equal to the No Observed Effect Dose (NOED) of 200.0 mg/kg wet weight (1333 mg/kg dry weight) reported for Zn in mussels (Applied Biomonitoring 2009), assuming a dry:wet ratio of 15%.

Table 3-6. Site Sediments - Neanthes Tissue Chemistry Results (dry weight)

Sample ID	Cu (mg/kg)	Zn (mg/kg)
PS03	20.8	99.9
PS09	8.7	50.9

4. QA/QCQA/QC

A thorough QA/QC review of the data and test procedures did not identify any likely impacts on test results; therefore, all presented data were deemed acceptable. Additionally, all test acceptability criteria were met.

All tests were conducted within the recommended 1-month holding time (initiated within three days of receipt). While the temperatures of the samples upon receipt were slightly outside the EPA recommended range of 0-6 °C, the samples were in a state of cooling and this exceedence was not deemed an issue.

Control test acceptability criteria were met for the *Leptocheirus* amphipod and the *Neanthes* polychaete toxicity tests. Control test acceptability criteria for the SWI exposure with embryos of M. galloprovincialis was just under the 80% mean normal-alive. However, the tests were deemed acceptable based on the responses of the site sediments all performing better than the control. For the *Ampelisca* amphipod toxicity tests, acceptability criteria were not met (mean survival of controls \geq 90% survival). However, samples were compared against the control for interest's sake.

The Total ammonia concentrations were below those that would be anticipated to be toxic to the test endpoints. A glossary of the qualifier codes used on the test datasheets is provided in Appendix E.

4.1. Reference Toxicant Testing

A 2-day copper sulfate (CuSO₄) reference toxicant test was conducted concurrently for the bivalve embryo-larval development test. The lab controls associated with this test did not met test acceptability criteria (TAC) and therefore is not deemed official. However, since the dose response observed was typical and the 2.9 μ g/L concentration was above the TAC, the reference toxicant test is shown below and reported for comparative and informational purposes.

The median effective concentration (EC_{50}) was 10.2 and 9.9 μ g/L for the proportion normal and proportion normal-alive endpoints, respectively. Each of these endpoints fell within two standard deviations of the laboratory's historical means (Table 4-1); indicating sensitivity to copper was consistent with that historically observed for this species.

Table 4-1. Results Summary for the Copper Reference Toxicant Tests Concurrently Conducted with the NBPL RWM Samples Collected on May 11, 2016.

Species & Endpoint	NOEC (μg/L copper)	LC ₅₀ or EC ₅₀ (µg/L copper)	Historical mean ± 2 SD (μg/L copper)
Mediterranean Mussel Embryo-Larval Development:			
Proportion Normal	8.4	9.9	7.1 ± 3.7
Proportion Normal-Survival	8.4	10.2	7.0 ± 4.3

5. SUMMARY

The results from this study showed that Cu and Zn concentrations did not exceed levels associated with toxic effects to the test organisms. No toxicity was observed for either sediment samples, PSO3 or PSO9, for the whole sediment test with the marine amphipod, *Leptocheirus plumulosus*, or with the marine polychaete, *Neanthes arenaceodentata*. While, the whole sediment test with the marine amphipod, *Ampelisca abdita*, did not meet test acceptability criteria, the results from PSO9 showed a slightly significant increase in toxicity from the control, however it is unlikely toxicity was associated with metal exposure because the sediment, overlying water, pore water, and tissue residue metal concentrations were below ecological effect levels. The controls associated with the exposure at the sediment-water interface using embryos from the bivalve, *Mytilus galloprovincialis*, did not meet test acceptability criteria; however, all samples performed better than the control and a comparative analysis revealed that no toxicity was present for either of the sediment samples. The lines of evidence (LOE, Simpson et al. 2013) for this study indicated non-toxic effects to test organisms with low potential for effects from Cu and Zn exposure (Table 5-1).

Table 5-1. Lines of Evidence for Toxicity and Chemistry based on bioassay results from whole sediment (A) and sediment water interface toxicity (B); and overlying water (OW), pore water (PW) chemistry (C), sediment chemistry (D), and tissue residue analysis (E).

	A Whole S	ediment Toxicity						
	L.							
Station	Survival	Survival	Survival	Growth (mg)				
PS03	8'	7% 59%	100%	5.10	Κe	ey for Tox	xicity Results	
PS09		3% 59%	100%				Non Toxi	
	B Sodimon	t Water Interface	Tovicity		0.05 >	p < 0.01	Slightly To	
	b. Seuimen		provincialis		p ≤ 0.	01	Toxic	
		Normal	1	nal Alive				
Station	Core	Homogenized		Homogenize	4			
PS03		9% 96%		_				
PS09		2% 93%						
	-	C. Water Chemistr	y I	N.		Δ.	1.	
		l mlumula aua	A sadbita					
DC03	low	L. plumulosus	A. adbita	arenaceo			vincialis	
PS03	PW	Low	Low	Lov		_	ow	
	PW	Low	Low	Lov	N	LC	ow	
PS09	ow	Laur	Law	Lev				
P309	PW	Low	Low	Lov			ow	
	PVV	Low	Low	Lov	N	LC	ow	
	ſ	D. Sediment Chem	nie try					
	<u> </u>	Bulk Sed	<63 um	(SEM-A\	/\$\/foc			
PS03		Low	Low	Lov	,.			
PS09		Low	Low	Lov				
F 303		LOW	LOW		rv .			
	-	. Tissue Residue (Chamistry in		Key for	Chemistr	y Results	
		Veanthes arenace	•	Low R	v Risk of Effects		Low	
		Cu	Zn	Medi	um Risk (of Effects	Mediuii	
PS03		Low	Low	High	Risk of Ef	fects	High	
PS09		Low	Low					
F303		LOW	LOW					

6. REFERENCES

- Anderson BS, Hunt JW, Phillips BM, Fairey R, Puckett HM, Stephenson M, Taberski K, Newman J, Tjeerdema RS. 2001. Influence of sample manipulation on contaminant flux and toxicity at the sediment—water interface. Marine Environmental Research. 51(3):191–211. doi:10.1016/S0141-1136(00)00034-9.
- Applied Biomonitoring 2009. Using Caged Mussels to Characterize Exposure & Effects over Small Spatial Scales in Sinclair Inlet: A Risk Assessment Based Approach. A Caged Mussel Study for Puget Sound Naval Shipyard & Intermediate Maintenance Facility Project ENVVEST. Final Report. Prepared for: Robert K. Johnston, Space and Naval Warfare Systems Center, Pacific, San Diego, California. Prepared by: Applied Biomonitoring, Kirkland, WA. October 16, 2009. 360pp. AppBio2009>
- (ASTM) American Society for Testing and Materials. 2008. Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing and for Selection of Samplers Used to Collect Benthic Invertebrates. ASTM E1391-2008. West Conshohocken, PA. 94 pp.
- Ecology (Washington Department of) 2013. Sediment Management Standards, Chapter 173-204 WAC, Publications number 13-09-055, February 2013, 151pp
- Ecology 2016. Chapter 173-201A WAC, WATER QUALITY STANDARDS FOR SURFACE WATERS OF THE STATE OF WASHINGTON. Last Update: 8/1/16. https://fortress.wa.gov/ecy/publications/documents/173201a.pdf
- Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19:81-97.
- Rosen G, Rivera-Duarte I, Chadwick DB Ryan A, Santore RC, Paquin P, 2008. Critical tissue copper residues for marine bivalve (Mytilus galloprovincialis) and echinoderm (Strongylocentrotus purpuratus) embryonic development: Conceptual, regulatory and environmental implications. Mar Environ Res 66:327-336.
- SCCWRP 2014. Sediment Quality Assessment Technical Support Manual. Technical Report 777. Southern California Coastal Water Research Project, Costa Mesa, CA.

 http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/777 CASQO TechnicalMan ual.pdf
- Simpson SL, Batley GE. 2007. Predicting metal toxicity in sediments: A critique of current approaches. Integrated Environmental Assessment and Management, 3: 18-31.
- Simpson SL, Strom D, Batley G. 2008. Development of a sediment quality guideline for copper. CSIRO Land and Water Science Report 51/08. September 2008. Prepared for Rio Tinto Pty Ltd, BHP Billiton Pty Ltd, and Xstrata Copper Pty Ltd. 39 pp.
- Simpson SL, Batley GB and Chariton AA (2013). Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines. CSIRO Land and Water Science Report 08/07. CSIRO Land and Water. <ISSN: 1835-095X>
- Strom, D., Simpson, S. L., Batley, G. E. and Jolley, D. F. (2011). The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environmental Toxicology and Chemistry, 30 (7), 1599-1610.

- Tidepool Scientific. 2012. Comprehensive Environmental Toxicity Information System™.
- USEPA. 1994. Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. EPA/600/R-94/025. Office of Research and Development, U.S. Environmental Protection Agency. Narragansett, RI.
- USEPA. 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. Office of Research and Development. Cincinnati, OH.
- US EPA, 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA-600-R-02-011, Office of Research and Development, Environmental Protection Agency, Washington, DC, January, 2005, 121pp.

Appendix A

Test Data and Statistical Summaries

Mediterranean Mussel

Mytilus galloprovincialis

 Report Date:
 28 Jul-11 17:45 (p 1 of 1)

 Test Code:
 475F78CB | 11-9743-9179

Divelve Lenve	I Cuminal and D	avalanmant	Toot							CDA	MAD Cuete	ma Cantar
Bivaive Larva	I Survival and D	evelopment	rest							SPA	WAR Syste	ms Center
Batch ID: Start Date: Ending Date: Duration:	11-0713-8919 03 May-11 20:0 05 May-11 18:0 46h	00 Prote	rce: Carlsbad Aquafarm					Analyst: Diluent: Brine: Age:	iluent: Laboratory Seawater rine: Not Applicable			
Sample ID: Sample Date: Receive Date: Sample Age:	11-3926-0850 28 Apr-11 : 29 Apr-11 09:0 5d 20h	Code Mate 0 Sour Stati	rial: A	43E7BDB2 Ambient Sediment Sample Sediment Copper Tools PSNS PS03				Client: Project:				ound 1
Batch Note:	SWI - Sediment Water Interface Test. Overlying Water consisted of 0.45µm filter laboratory seawater diluted to 30ppt with Nanopure DI water.											
Sample Note:	Note: Both bulk sediment and core sediment collected. Bulk sediment sieved to 2mm upon receipt in lab. Homogenized sediment distributed to test chambers on 5/2/2011. (alternate ID: B-1 or PSNS-1); Sample Conc 100 = Intact Core; 101 = Homogenized											
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
15-6941-8339			101	>101	N/A	27.4%					parison Tes	
15-6702-5543	Proportion Nor	mal	101	>101	N/A	15.6%		Dunn	ett M	ultiple Com	parison Tes	t
Combined Pro	oportion Norma	I Summary										
Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.7559	0.7044	0.8074	0.5607	0.859	98 0.068	894	0.1379	18.24%	0.0%
ŭ	Lab Control	7	0.7000	0.7044	0.001 1	0.0001	0.00	0.000	70-1	00.0		
100	Lab Control	4	0.8577	0.816	0.8994	0.729	0.97			0.1116	13.01%	-13.46%
_	Lab Control								58			-13.46% -28.79%
100 101	ormal Summary	4	0.8577	0.816	0.8994	0.729	0.973	35 0.055	58	0.1116	13.01%	
100 101		4	0.8577	0.816	0.8994	0.729	0.973	35 0.055	58 703	0.1116	13.01%	
100 101 Proportion No	ormal Summary	4	0.8577 0.9736	0.816 0.9609	0.8994 0.9863	0.729 0.9286	0.973 1	35 0.055 0.017 Std E	58 703 Err	0.1116 0.03407	13.01% 3.5%	-28.79%
100 101 Proportion No Test Group	ormal Summary Control Type	4 4 Count	0.8577 0.9736 Mean	0.816 0.9609 95% LCL	0.8994 0.9863 95% UCL	0.729 0.9286 Min	0.973 1 Max	35 0.055 0.017 Std E 98 0.036	58 703 Err 565	0.1116 0.03407 Std Dev	13.01% 3.5% CV%	-28.79% %Effect
100 101 Proportion No Test Group 0	ormal Summary Control Type	4 4 Count	0.8577 0.9736 Mean 0.8038	0.816 0.9609 95% LCL 0.7764	0.8994 0.9863 95% UCL 0.8311	0.729 0.9286 Min 0.6983	0.973 1 Max 0.859	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329	13.01% 3.5% CV% 9.12%	-28.79% %Effect 0.0%
100 101 Proportion No Test Group 0 100 101	ormal Summary Control Type	4 4 Count 4 4 4	0.8577 0.9736 Mean 0.8038 0.8941	0.816 0.9609 95% LCL 0.7764 0.8638	0.8994 0.9863 95% UCL 0.8311 0.9245	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101	ormal Summary Control Type Lab Control	4 4 Count 4 4 4	0.8577 0.9736 Mean 0.8038 0.8941	0.816 0.9609 95% LCL 0.7764 0.8638	0.8994 0.9863 95% UCL 0.8311 0.9245	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro	Control Type Lab Control oportion Norma	Count 4 4 4 I Detail	0.8577 0.9736 Mean 0.8038 0.8941 0.9578	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro Test Group	Control Type Lab Control oportion Norma Control Type	Count 4 4 4 I Detail Rep 1	0.8577 0.9736 Mean 0.8038 0.8941 0.9578	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro Test Group 0	Control Type Lab Control oportion Norma Control Type	Count 4 4 4 1 Detail Rep 1 0.757	0.8577 0.9736 Mean 0.8038 0.8941 0.9578 Rep 2 0.8598	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504 Rep 3	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652 Rep 4 0.5607	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro Test Group 0 100	Control Type Lab Control oportion Norma Control Type Lab Control	Count 4 4 4 4 1 Detail Rep 1 0.757 0.9735	0.8577 0.9736 Mean 0.8038 0.8941 0.9578 Rep 2 0.8598 0.9247	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504 Rep 3 0.8462 0.8037	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652 Rep 4 0.5607 0.729	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro Test Group 0 100 101	Control Type Lab Control oportion Norma Control Type Lab Control	Count 4 4 4 4 1 Detail Rep 1 0.757 0.9735	0.8577 0.9736 Mean 0.8038 0.8941 0.9578 Rep 2 0.8598 0.9247	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504 Rep 3 0.8462 0.8037	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652 Rep 4 0.5607 0.729	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No Test Group 0 100 101 Combined Pro Test Group 0 100 100 101 Proportion No	Control Type Lab Control coportion Norma Control Type Lab Control	Count 4 4 4 1 Detail Rep 1 0.757 0.9735 0.9286	0.8577 0.9736 Mean 0.8038 0.8941 0.9578 Rep 2 0.8598 0.9247 0.9658	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504 Rep 3 0.8462 0.8037	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652 Rep 4 0.5607 0.729 1	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%
100 101 Proportion No. Test Group 0 100 101 Combined Pro Test Group 0 100 101 Proportion No. Test Group	Control Type Lab Control Control Type Control Type Lab Control Control Type Control Control Type Control Type	Count 4 4 4 1 Detail Rep 1 0.757 0.9735 0.9286	0.8577 0.9736 Mean 0.8038 0.8941 0.9578 Rep 2 0.8598 0.9247 0.9658	0.816 0.9609 95% LCL 0.7764 0.8638 0.9504 Rep 3 0.8462 0.8037 1	0.8994 0.9863 95% UCL 0.8311 0.9245 0.9652 Rep 4 0.5607 0.729 1	0.729 0.9286 Min 0.6983 0.7818	0.973 1 Max 0.859 0.973	35 0.055 0.017 Std E 98 0.036 35 0.040	58 703 Err 665 066	0.1116 0.03407 Std Dev 0.07329 0.08133	13.01% 3.5% CV% 9.12% 9.1%	-28.79% %Effect 0.0% -11.24%

Report Date: Test Code: 28 Jul-11 17:44 (p 1 of 2) 475F78CB | 11-9743-9179

Bivalve Larval Survival and Development Test

SPAWAR Systems Center

Analysis ID:	15-6702-5543	Endpoint:	Proportion Normal	CETIS Version:	CETISv1.8.1

Analyzed: 28 Jul-11 17:44 Analysis: Parametric-Control vs Treatments Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run	101	>101	N/A		15.6%	

Dunnett Multiple Comparison Test

Control	vs	Test Group	Test Sta	t Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	-2.063	2.18	6	0.1488	0.9909	Non-Significant Effect
		101	-3.681	2.18	6	0.1488	0.9996	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.126847	0.06342348	2	6.809	0.0158	Significant Effect
Error	0.08383599	0.00931511	9			
Total	0.210683	0.0727386	11	<u>_</u>		

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	2.577	9.21	0.2757	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9434	0.8025	0.5427	Normal Distribution

Proportion Normal Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.8038	0.7759	0.8316	0.6983	0.8598	0.03665	0.07329	9.12%	0.0%
100		4	0.8941	0.8632	0.9251	0.7818	0.9735	0.04066	0.08133	9.1%	-11.24%
101		4	0.9578	0.9502	0.9653	0.9286	0.9727	0.009914	0.01983	2.07%	-19.16%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.116	1.082	1.15	0.9893	1.187	0.04454	0.08908	7.98%	0.0%
100		4	1.257	1.206	1.308	1.085	1.407	0.06687	0.1337	10.64%	-12.61%
101		4	1.367	1.35	1.385	1.3	1.405	0.02304	0.04609	3.37%	-22.51%

Report Date:

28 Jul-11 17:44 (p 2 of 2) 475F78CB | 11-9743-9179

Test Code:

SPAWAR Systems Center

Bivalve Larva	I Surviva	I and Deve	elopment	Test
---------------	-----------	------------	----------	------

Analysis ID:	15-6941-8339	Endpoint:	Combined Proportion Normal	CETIS Version:	CETISv1.8.1

Analyzed: 28 Jul-11 17:44 Analysis: Parametric-Control vs Treatments Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	0	C > T	Not Run	101	>101	N/A		27.4%

Dunnett Multiple Comparison Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	-1.374	2.18	6	0.2295	0.9642	Non-Significant Effect
		101	-3.499	2.18	6	0.2295	0.9994	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.2755946	0.1377973	2	6.216	0.0202	Significant Effect
Error	0.1995258	0.02216953	9			
Total	0.4751204	0.1599668	11	<u>_</u>		

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	0.5549	9.21	0.7577	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9308	0.8025	0.3890	Normal Distribution

Combined Proportion Normal Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.7559	0.7035	0.8084	0.5607	0.8598	0.06894	0.1379	18.24%	0.0%
100		4	0.8577	0.8153	0.9002	0.729	0.9735	0.0558	0.1116	13.01%	-13.46%
101		4	0.9736	0.9606	0.9866	0.9286	1	0.01703	0.03407	3.5%	-28.79%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.064	1.005	1.124	0.8463	1.187	0.07819	0.1564	14.7%	0.0%
100		4	1.209	1.143	1.275	1.023	1.407	0.08671	0.1734	14.35%	-13.59%
101		4	1.432	1.391	1.474	1.3	1.522	0.05473	0.1095	7.64%	-34.62%

Report Date: 28 Jul-11 17:46 (p 1 of 1) **Test Code:** 3CF27BB9 | 10-2252-4345

									1621	Coue.		301	21009 10	7-2232-4340
Bivalve Larva	Survival and D	evelopment	Test				-					SPA	WAR Syste	ms Center
Batch ID: Start Date: Ending Date: Duration:	11-0713-8919 03 May-11 20:0 05 May-11 18:0 46h	00 Prot	ocol: cies:	Developme EPA/600/R Mytilis galle Carlsbad A	2-95/1 oprov	136 (1995) vincialis			Analy Dilue Brine Age:	e: Laboratory Seawater Not Applicable				
Sample ID: Sample Date: Receive Date: Sample Age:	04-9494-1312 28 Apr-11 29 Apr-11 09:0 5d 20h		erial: rce:	Sediment (1D803480 Client: Ambient Sediment Sample Project: Sediment Copper Tools PSNS PS09						SPAWAR Sediment Copper Tools - Round 1			
Batch Note:	SWI - Sedimen pure DI water.	t Water Inter	face Te	est. Overlyin	g Wa	iter consiste	d of 0.45µı	m filter	labora	itory sea	awat	er diluted to	30ppt with	Nano-
Sample Note:	: Both bulk sediment and core sediment collected. Bulk sediment sieved to 2mm upon receipt in lab. Homogenized sediment distributed to test chambers on 5/2/2011. (alternate ID: B-2 or PSNS-2); Sample Conc 100 = Intact Core; 101 = Homogenized													
Comparison S	Summary													
Analysis ID	Endpoint		NOEL	LOEL		TOEL	PMSD	TU		Metho	od			
15-1236-3644 05-7543-3244	Combined Prop Proportion Nor		101 101	>101 >101		N/A N/A	29.3% 13.2%			Dunnett Multiple Comparison Test Dunnett Multiple Comparison Test				
Combined Pro	portion Norma	I Summary												
Test Group	Control Type	Count	Mean	95% I	_CL	95% UCL	Min	Max	(Std E	rr	Std Dev	CV%	%Effect
0	Lab Control	4	0.755	9 0.704	4	0.8074	0.5607	0.85	598	0.068	94	0.1379	18.24%	0.0%
100		4	0.790	6 0.746	1	0.8351	0.6355	0.91	194	0.059	54	0.1191	15.06%	-4.58%
101		4	0.834	1 0.791	5	0.8767	0.729	0.96	526	0.057	02	0.114	13.67%	-10.34%
Proportion No	ormal Summary													
Test Group	Control Type	Count	Mean	95% I	_CL	95% UCL	Min	Max	(Std E	rr	Std Dev	CV%	%Effect
0	Lab Control	4	0.803	8 0.776	4	0.8311	0.6983	0.85	598	0.036	65	0.07329	9.12%	0.0%
100		4	0.919	7 0.902	6	0.9368	0.8641	0.97	765	0.022	94	0.04589	4.99%	-14.42%
101		4	0.924	9 0.912	5	0.9373	0.8889	0.96	626	0.016	6	0.03319	3.59%	-15.07%
Combined Pro	portion Norma	l Detail												
Test Group	Control Type	Rep 1	Rep 2	Rep 3	3	Rep 4								
0	Lab Control	0.757	0.859	8 0.846	2	0.5607								
100		0.7757	0.831	8 0.635	5	0.9194								
101		0.9626	0.729	0.897	2	0.7477								
Proportion No	ormal Detail													
Test Group	Control Type	Rep 1	Rep 2	Rep 3	}	Rep 4								
0	Lab Control	0.6983	0.859	8 0.846	2	0.8108								
100		0.9765	0.864	1 0.918	9	0.9194								
101		0.9626	0.907	0.941	2	0.8889								

Report Date:

28 Jul-11 17:46 (p 1 of 2) 3CF27BB9 | 10-2252-4345

Test Code:

SPAWAR Systems Center

Bivaive Larvai	Survivai and	Development	rest
----------------	--------------	-------------	------

Analysis ID:	05-7543-3244	Endpoint:	Proportion Normal	CETIS Version:	CETISv1.8.1

Analyzed: 28 Jul-11 17:46 Analysis: Parametric-Control vs Treatments Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected)	0	C > T	Not Run	101	>101	N/A		13.2%	

Dunnett Multiple Comparison Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	-3.023	2.18	6	0.128	0.9986	Non-Significant Effect
		101	-3.104	2.18	6	0.128	0.9988	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.08633389	0.04316695	2	6.259	0.0198	Significant Effect
Error	0.06207319	0.006897021	9			
Total	0.1484071	0.05006397	11			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	0.3493	9.21	0.8398	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9815	0.8025	0.9889	Normal Distribution

Proportion Normal Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.8038	0.7759	0.8316	0.6983	0.8598	0.03665	0.07329	9.12%	0.0%
100		4	0.9197	0.9023	0.9372	0.8641	0.9765	0.02294	0.04589	4.99%	-14.42%
101		4	0.9249	0.9123	0.9375	0.8889	0.9626	0.0166	0.03319	3.59%	-15.07%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.116	1.082	1.15	0.9893	1.187	0.04454	0.08908	7.98%	0.0%
100		4	1.294	1.259	1.329	1.193	1.417	0.0461	0.0922	7.13%	-15.9%
101		4	1.298	1.274	1.323	1.231	1.376	0.03262	0.06523	5.02%	-16.33%

Report Date: Test Code: 28 Jul-11 17:46 (p 2 of 2) 3CF27BB9 | 10-2252-4345

Bivalve Larval Survival and Development Test

SPAWAR Systems Center

Analysis ID:	15-1236-3644	Endpoint:	Combined Proportion Normal	CETIS Version:	CETISv1.8.1

Analyzed: 28 Jul-11 17:45 Analysis: Parametric-Control vs Treatments Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	0	C > T	Not Run	101	>101	N/A		29.3%

Dunnett Multiple Comparison Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	-0.3896	2.18	6	0.2444	0.8005	Non-Significant Effect
		101	-0.9634	2.18	6	0.2444	0.9225	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.02360935	0.01180467	2	0.4697	0.6397	Non-Significant Effect
Error	0.2261879	0.02513199	9			
Total	0.2497972	0.03693666	11			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	0.03732	9.21	0.9815	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9446	0.8025	0.5605	Normal Distribution

Combined Proportion Normal Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.7559	0.7035	0.8084	0.5607	0.8598	0.06894	0.1379	18.24%	0.0%
100		4	0.7906	0.7453	0.8359	0.6355	0.9194	0.05954	0.1191	15.06%	-4.58%
101		4	0.8341	0.7907	0.8775	0.729	0.9626	0.05702	0.114	13.67%	-10.34%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.064	1.005	1.124	0.8463	1.187	0.07819	0.1564	14.7%	0.0%
100		4	1.108	1.051	1.165	0.9226	1.283	0.07499	0.15	13.54%	-4.1%
101		4	1.172	1.108	1.236	1.023	1.376	0.08433	0.1687	14.39%	-10.15%

Embryo Larval Bioassay

48-hour Development

Droject:	Internal - Cu Availability Study
ر Juple JD:	Ambient Sediment Samples

Test Species: M.galloprovincialis
Start Date: ชีไว้ไว้เป

End Date: 5/5/201

T					
Sample ID	Replicate	Number Normal	Number Abnormal	Technician Initials	
	A	8/	35	6.12	
Water Only Control	В	92	15	6R	
CORE BLANK	С	1/0	20	uc	
	D	60	14	68]
0, 1, 1, 1	Α	42	16	6R	
Shelter Island -	В	97		6R	
Intact Core	С	98	10	- CR	
	D	102	2-	MC	
.	Α	101	5 31.	6R	
Shelter Island -	В	85	31.	<i>b</i> R	
Homogenized	С	127	b	6R	
	D	117	0	6A	
	Α	ا (, 1	MC	
Naval Base SD -	В	83	17	GR	
Intact Core	С	80	9	MC	
	D	41	26	, MC	* term. early
	. A	100	ll ·	GR -	
Naval Base SD -	B	108	8	HC .	
Homogenized	С	102	8	6R	
	D	91	5	MC	
	Α	110	3	6R	
Bremerton PS03	B [.]	135	11	GR	
(B1) - Intact Core	C	86	24	6R	
	D	ml-7878	9	me	
	Α	1/7	64	6R	
Bremerton PS03	В	113	4	6A	
(B1) - Homogenized	С	107	4	ER	
	D	107	3	NC	,
	Α	83	2	MC	
Bremerton PS09	В	89	14	GR	
(B2) - Intact Core	С	46 (48)	5 (4)	LIC (MC-filteral	* LOTS OF DES
	D	114	10	6R	KAPES
	Α	103	74	NIC	Si Hered
Bremerton PS09	В	70	8	uc_	•
(B2) - Homogenized	С	94	0	HIC .	giltered
	n	<u> </u>	10	100	Culocal

Final Review:

Ane Zero warts - A: 194 B: 198 C: 246 E D: 209 D E: 187

Marine Chronic Bioassay

Water Quality Measurements

Sample ID: Ambient Sediment Samples Project: Internal - Cu Availability Study

Test Species: M.galloprovincialis 2000 Start Date/Time: 5/3/2011 End Date/Time: 5/5/2011

	·	Т	T	Ī					1	1	T	
	-	48	2 0	40.07	1 0 00 00 00 00 00 00 00 00 00 00 00 00	, 0	0.43	\$ 22	8.21	16 8	1 . 0	9 0
Hd	(pH units)	24	3	3 2	5 6) d		8.16	(Y) &W	0) 3		8.17 8.15
		С	9 (1)	F 0.4	01.9	\$.0.0	>	ğ 0	8.05	8.09	7.05	8.08
/gen		48	1. 1.	7.7	7.0	4		7.2	7.7	7.4	7 ;	7.0
Dissolved Oxygen	(mg/L)	24	89	7.4	7	7.4		7.2	7.3	7.0	7.5	1 =
Diss		0	7.9	7.7	9			9-	7.5	5,7	2.0	6 7
re-	i	48	(5.8	15.9	16.0	ñ		159	15.7	158	1.5.	にご
Temperature	(၁)	24	80	15.8	15.5	15.9		15.9	158	15.7	15.6	5.4
H		0	<i>57-1</i>	15.1	15.1	14.8		15.7	14.1	14.8	150	アゴ
		48	29.60	30.66	30.8	30.4	2000	90.8	30.3	30.2	1.08	8.3
Salinity	(ppt)	24	30.0	30.3	30.9	30.9	,	30,8	30.3	30.2	30.2	36.3
		0	30.1	30.2	30.8	30.4		9.0 <i>c</i>	39.0	30.1	20.7	505
Ci clamco	Sample ID		Water Only Control	Shelter Island - Core	Shelter Island - Hom.	Naval Base SD - Core		Naval Base SD - Hom.	Bivalve - Bremerton PS03 - Core	Bivalve - Bremerton PS03 - Hom.	81 Bivalve - Bremerton PS09 - Core	67 Bivalve - Bremerton PS09 - Hom.

48 24 ₹ 0 WQ Readings: Dilutions made by:

Technician Initials:

Animal Source/Date Received:

5/3/2011 Carlsbad Aquafarms

Comments:

0 hrs: 24 hrs:

48 hrs:

QC Check:

CuSO4 Reference Toxicant Concentration Calculations Mar-11

Bivalve: 1ppm

Volume / concentration needed= 100 mL C1 (below) 100 1000 (below)

Conc's:	Volume (mL) of 1000 μg/L stock	Volume (mL) of SW
0	0.000	100.0
2.9	0.290	99.7
4.1	0.410	99.6
5.8	0.580	99.4
8.4	0.840	99.2
12	1.200	98.8
17.2	1.720	98.3
-24	2.400	97.6
-35	-3.500	96:5
-50	5.000	95.0

15,94 mL of stock needed

SUBSTOCK CALCULATIONS

Stock

1PPM

1 g/L 1 mg/L substock 1000 µg/L

100

1000 μg/L: 0.1 mL of 1 g/L stock into 100 mL

Cu Stock Date

Cu Stock Date

QC:

-	PAWNING CHECKLIST & CALCULATIONS
Batch ID: 050311Mg Spawn/Tes	et Date: 05/03/11 Test Species M.gallo pro uncialis
Task	Time
Spawning Inducement Initiated	1400 HP
Spawning Begins	1500 HR 5 8, 49 1815 HR: 17
Females/Males Isolated in Incubator	1820 HK
Fertilization Initiated	1825 HR
Fertilzation Terminated/eggs rinsed	1835 HR
Embryo Counts	19 00 HR
Embryo addition to vials	2000 HR
Embryo Stock #3:, Mean and Adjust selected embryo stock to 2000 em	$\frac{42}{32}$ uL * 1000 uL/mL = $\frac{2100}{100}$ cells/mL
Add 100 pl suspension	for a 200 embryos core, exposure for sediment Copper Tools

Marine Amphipod

Leptocheirus plumulosus

Report Date:

28 Jul-11 18:50 (p 1 of 1)

360F16F4 | 09-0695-8580 **Test Code:**

							Те	st Code:	36	60F16F4 0	9-0695-858
Leptocheirus	10-d Survival a	nd Reburia	l Sedime	ent Test					SPA	WAR Syste	ems Centei
Batch ID: Start Date: Ending Date: Duration:	14-5299-7720 03 May-11 10:: 13 May-11 09: 9d 22h	30 Pro	st Type: otocol: ecies: urce:	Survival-Reburial EPA/600/R-94/025 (1994) Leptocheirus plumulosus Chesapeake Cultures					Laboratory Seawater Not Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:	•	Ma 0 So	de: terial: urce: ation:	43E7BDB2 Ambient Sedim Sediment Copp PSNS PS03	'		_	-	AWAR diment Copp	er Tools - R	Round 1
Batch Note:	Overlying Wate	er consisted	l of 0.45µ	ım filter laborato	ry seawater	diluted to 3	30ppt with	Nano-pure DI	water.		
Sample Note:				nent collected. B /2011. (alternate			2mm upor	receipt in lat	o. Homogeni	zed sedime	nt
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
04-3540-0521	Survival Rate		100	>100	N/A	12.8%		Equal Va	riance t Two	-Sample Te	est
Survival Rate	Summary										
Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	3	0.9	0.8677	0.9323	0.8	0.95	0.05	0.0866	9.62%	0.0%
100		3	0.866	7 0.8559	0.8774	0.85	0.9	0.01667	0.02887	3.33%	3.7%
Survival Rate	Detail							-			
Test Group	Control Type	Rep 1	Rep 2	Rep 3							
0	Lab Control	0.95	0.8	0.95							
100		0.85	0.85	0.9							

Report Date: Test Code: 28 Jul-11 18:50 (p 1 of 1) 360F16F4 | 09-0695-8580

Leptocheirus 10-d Survival and Reburial Sediment Test

SPAWAR Systems Center

Analysis ID: 04-3540-0521 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 28 Jul-11 18:48 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Angular (Corrected)	0	C > T	Not Run	Sample passes survival rate endpoint	12.8%

Equal Variance t Two-Sample Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(a:5%)
Lab Control		100	0.8101	2.132	4	0.1776	0.2317	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.006832685	0.006832685	1	0.6562	0.4633	Non-Significant Effect
Error	0.04165075	0.01041269	4			
Total	0.04848344	0.01724537	5	<u></u>		

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	9.831	199	0.1847	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.8595	0.43	0.1874	Normal Distribution

Survival Rate Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	3	0.9	0.8671	0.9329	0.8	0.95	0.05	0.0866	9.62%	0.0%
100		3	0.8667	0.8557	0.8776	0.85	0.9	0.01667	0.02887	3.33%	3.7%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	3	1.266	1.214	1.318	1.107	1.345	0.07938	0.1375	10.86%	0.0%
100		3	1.198	1.182	1.215	1.173	1.249	0.02532	0.04385	3.66%	5.33%

Report Date: Test Code: 28 Jul-11 18:51 (p 1 of 1) 75B9DE53 | 19-7511-5347

Leptocheirus 10-d Survival and Reburial Sediment Test

SPAWAR Systems Center

Batch ID: 14-5299-7720 Test Type: Survival-Reburial Analyst:

Start Date:03 May-11 10:30Protocol:EPA/600/R-94/025 (1994)Diluent:Laboratory SeawaterEnding Date:13 May-11 09:00Species:Leptocheirus plumulosusBrine:Not Applicable

Duration: 9d 22h **Source:** Chesapeake Cultures **Age:**

Sample ID: 04-9494-1312 **Code:** 1D803480 **Client:** SPAWAR

Sample Date: 28 Apr-11 Material: Ambient Sediment Sample Project: Sediment Copper Tools - Round 1

Receive Date: 29 Apr-11 09:00 Source: Sediment Copper Tools

Sample Age: 5d 10h Station: PSNS PS09

Batch Note: Overlying Water consisted of 0.45µm filter laboratory seawater diluted to 30ppt with Nano-pure DI water.

Sample Note: Both bulk sediment and core sediment collected. Bulk sediment sieved to 2mm upon receipt in lab. Homogenized sediment

distributed to test chambers on 5/2/2011. (alternate ID: B-2 or PSNS-2)

Comparison Summary

Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method

00-3721-3818 Survival Rate 100 >100 N/A 17.3% Equal Variance t Two-Sample Test

Survival Rate Summary

Test Group **Control Type** Count 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Mean 0 Lab Control 3 0.9 0.8677 0.9323 8.0 0.95 0.05 0.0866 9.62% 0.0% 100 3 0.9333 0.9118 0.9549 0.9 0.03333 0.05774 6.19% -3.7% 1

Survival Rate Detail

 Test Group
 Control Type
 Rep 1
 Rep 2
 Rep 3

 0
 Lab Control
 0.95
 0.8
 0.95

 100
 0.9
 0.9
 1

Report Date: Test Code: 28 Jul-11 18:51 (p 1 of 1) 75B9DE53 | 19-7511-5347

Leptocheirus 10-d Survival and Reburial Sediment Test

SPAWAR Systems Center

Analysis ID: 00-3721-3818 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 28 Jul-11 18:51 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Angular (Corrected)	0	C > T	Not Run	Sample passes survival rate endpoint	17.3%

Equal Variance t Two-Sample Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	-0.5015	2.132	4	0.2255	0.6788	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.004220693	0.004220693	1	0.2515	0.6424	Non-Significant Effect
Error	0.06712493	0.01678123	4			
Total	0.07134563	0.02100193	5			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	1.289	199	0.8736	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9092	0.43	0.4314	Normal Distribution

Survival Rate Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	3	0.9	0.8671	0.9329	0.8	0.95	0.05	0.0866	9.62%	0.0%
100		3	0.9333	0.9114	0.9553	0.9	1	0.03333	0.05773	6.19%	-3.7%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	3	1.266	1.214	1.318	1.107	1.345	0.07938	0.1375	10.86%	0.0%
100		3	1.319	1.273	1.365	1.249	1.459	0.0699	0.1211	9.18%	-4.19%

Marine Sediment Bioassay

Organism Survival

Client: Internal - Cu Availability Study	Test Species:	Leptocheirus plur	nulosus
Ambient Sediment Samples	Start Date/Time:	5/3/201	1 1030
	Fnd Date/Time:	1:1500	5/13/201

Prince Pri					¬
Sample ID	Replicate	Initial No.	No. Recovered	Technician Initials	
	Α	20			
Lab Control	B	20			
Lab College	С	20		No. Control of the Co	
	D	20			
	Α	20	9	7 bodily BLS	
Shelter Island	В	20	9 9	Hardley BLS	
Shekei island	С	20	11	bodies Bes	
	D	20			I a dan Ma
	Α	20	15	Shodley BLS	generally- Sin poor condition 3 Centred Strang
Naval Base SD	В	20	13	2 hode Bus	3 in pool
Navai Base OD	С	20	12	Shedres BLS) and non
	D	20			
	Α	20		5/5	
PSNS - 1	В	20	17	1604 BUS	2 locked
1 0110 - 1	С	20	18	OBES	J Strong
	D	20		•	
	Α	20	18	6R 1 polyclacker	oo keel stoma
PSNS - 2	В	20	18	GR /ock strong	1.
1010-2	С	20	20	BR: 11 11 1	
	Ð	20			
	А	20			
	В	20			
[С	20	. :		ALCOHOLOGICA CONTRACTOR CONTRACTO
	D	20			The state of the s

QC Check: 115 25 201 Final Review:

Naval Base-only one rep used for sediment (Lepto)
collection; too five.

BRI - only one rep for sediment.

ments

10-Day warine Sediment Bioassay Static Conditions

Internal - Cu Availability Study Client:

Sample ID: Bring 120 PSOG-

57

Test Species: Leptocheirus plumulosus

1030 Start Date/Time: 5/3/2 S13/2011 1315

End Date/Time:

Comments		T THE PROPERTY AND THE			THE PROPERTY AND ADDRESS ASSESSMENT ASSESSME						
Technician Initials	ンな	274	MC	2	W	06	MC	Ĩ	JN .	S	J.V.
pH (units)	7.93	8.09	21.8	10.8	800	01.3	808	8.17	8,08	10.8	8.09
Dissolved Oxygen (mg/L)	(%)	6.4	6,7				1.0)	16.2	Leg		ે. ડ
Temperature (°C)	19.7	20.1	20,1	20.02	19.9	20. i	19.7	p. p.	19.7	20.1	6.61
Salinity (ppt)	30.1	30.2	30.4			THE PARTY OF THE P	30.5	38.4	30.le		30.7
Test Day	0	7	2	င	4	S	ဖ	7	∞	ത	10

QC Check:

10-Day ___rrine Sediment Bioassay Static Conditions

Client: Internal - Cu Availability Study

Test Species: Leptocheirus plumulosus

	-				•	***************************************
Sample ID:	Sample ID: Bremerton PS03-	303- 131		,	Start Date/Time:	5 3 201 103
					End Date/Time:	5/13/2011 13/5
				•		
Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	30.1	19.5	4.0)	7.9पं	>\^ .	
-	30.3	19.9	to.7	8.05	214	
2	30.5	20.2	6.3	8.09	7774	
က		20.3		B. 17	<i>→</i> 0	
4	·	20.2		46.8	730	
æ		6.00		8.45	3	
ဖ	30.4	20.02	ٷ	8,59	re	
7	30.4	6.51	(6-1)	8.iol	ک بارا الرا	
œ	50.7	20.0	Le. 7	8.69)M	
6	N PARTIES AND	20.3		8.106	3	
10	7.05	19.8	(e. 4	かしる	ac.	

Final Review:

QC Check: ML

Marine Amphipod

Ampelisca abdita

Report Date: Test Code: 28 Jul-11 18:25 (p 1 of 1) 18D4DAAB | 04-1660-2795

Ampelisca 10-d Survival Sediment Test SPAWAR Systems Center

Batch ID: 04-6863-0121 Test Type: Survival Analyst:

Start Date:03 May-11 19:00Protocol:EPA/600/R-94/025 (1994)Diluent:Laboratory SeawaterEnding Date:13 May-11 13:00Species:Ampelisca abditaBrine:Not Applicable

Duration: 9d 18h **Source:** Aquatic Research Organisms, NH **Age:**

Sample ID: 11-3926-0850 **Code:** 43E7BDB2 **Client:** SPAWAR

Sample Date: 28 Apr-11 Material: Ambient Sediment Sample Project: Sediment Copper Tools - Round 1

Receive Date: 29 Apr-11 09:00 Source: Sediment Copper Tools

Sample Age: 5d 19h Station: PSNS PS03

Batch Note: Overlying Water consisted of 0.45µm filter laboratory seawater diluted to 30ppt with Nano-pure DI water.

Sample Note: Both bulk sediment and core sediment collected. Bulk sediment sieved to 2mm upon receipt in lab. Homogenized sediment

distributed to test chambers on 5/2/2011. (alternate ID: B-1 or PSNS-1)

Comparison Summary

Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method

08-7267-7946 Survival Rate 100 >100 N/A 28.1% Equal Variance t Two-Sample Test

Survival Rate Summary

Test Group **Control Type** Count 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Mean 0 Lab Control 4 0.7849 0.7179 0.8518 0.5625 0.08967 0.1793 22.85% 0.0% 100 0.5925 0.5475 0.6376 0.5 0.7692 0.06028 0.1206 20.35% 24.5%

Survival Rate Detail

Test Group Control Type Rep 1 Rep 2 Rep 3 Rep 4 Lab Control 0.8077 0.5625 0 0.7692 100 0.7692 0.5385 0.5 0.5625

Report Date:

28 Jul-11 18:24 (p 1 of 1)

Test Code:

18D4DAAB | 04-1660-2795

Ampelisca 10-d Survival Sediment Test

SPAWAR Systems Center

Analysis ID:	08-7267-7946	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.1

Analyzed: 28 Jul-11 18:24 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Angular (Corrected)	0	C > T	Not Run	Sample passes survival rate endpoint	28.1%

Equal Variance t Two-Sample Test

Control	VS	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	1.715	1.943	6	0.2699	0.0686	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.113528	0.113528	1	2.942	0.1371	Non-Significant Effect
Error	0.2315116	0.03858527	6			
Total	0.3450396	0.1521132	7			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	3.716	47.47	0.3096	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9216	0.6451	0.4429	Normal Distribution

Survival Rate Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.7849	0.7166	0.8531	0.5625	1	0.08967	0.1793	22.85%	0.0%
100		4	0.5925	0.5467	0.6384	0.5	0.7692	0.06028	0.1206	20.35%	24.5%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.12	1.026	1.214	0.8481	1.445	0.1233	0.2466	22.02%	0.0%
100		4	0.8818	0.8331	0.9304	0.7854	1.07	0.06396	0.1279	14.51%	21.27%

Report Date: Test Code: 28 Jul-11 18:28 (p 1 of 1) 2E5F3F2C | 07-7799-4028

							res	t Code:	20	5F3F2C U/	7-7799-402
Ampelisca 10-	d Survival Sedi	ment Tes	t						SPA	WAR Syste	ms Center
Batch ID: Start Date: Ending Date: Duration:	04-6863-0121 03 May-11 19:0 13 May-11 13:0 9d 18h	00 Pr 00 Sp	est Type: rotocol: pecies: ource:	Survival EPA/600/R-94 Ampelisca abo Aquatic Resea	dita	ns, NH		ne: Not	poratory Sea t Applicable	water	
Sample ID: Sample Date: Receive Date: Sample Age:	•	M O So	ode: aterial: ource: tation:	1D803480 Ambient Sedir Sediment Cop PSNS PS09	•		Clie Pro		SPAWAR Sediment Copper Tools - Round 1		
Batch Note:	Overlying Wate	r consiste	ed of 0.45µ	m filter laborat	ory seawater	diluted to 30	ppt with N	ano-pure DI	water.		
Sample Note:	Both bulk sedin distributed to te						mm upon	receipt in lat	o. Homogeni	zed sedimer	nt
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
10-2926-6458	Survival Rate		<100	100	N/A	24.8%		Equal Va	riance t Two	-Sample Te	st
Point Estimate	Summary										
Analysis ID	Endpoint		Level		95% LCL	95% UCL	TU	Method			
17-7521-7542	Survival Rate		LC50	>100	N/A	N/A		Linear Int	terpolation (I	CPIN)	
Survival Rate	Summary										
Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.784	9 0.7179	0.8518	0.5625	1	0.08967	0.1793	22.85%	0.0%
100		4	0.588	9 0.5726	0.6053	0.5625	0.6538	0.0219	0.0438	7.44%	24.96%
Survival Rate	Detail										
Test Group	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Lab Control	0.8077	0.7692	2 0.5625	1						
100		0.5769	0.653	0.5625	0.5625						

Report Date: Test Code: 28 Jul-11 18:28 (p 1 of 1) 2E5F3F2C | 07-7799-4028

Ampelisca 10-d Survival Sediment Test

SPAWAR Systems Center

Analysis ID: 10-2926-6458 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 28 Jul-11 18:26 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Angular (Corrected)	0	C > T	Not Run	Sample fails survival rate endpoint	24.8%

Equal Variance t Two-Sample Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100*	1.954	1.943	6	0.2435	0.0493	Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.1199362	0.1199362	1	3.818	0.0985	Non-Significant Effect
Error	0.1884838	0.03141397	6			
Total	0.30842	0.1513502	7			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	30.08	47.47	0.0194	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.8637	0.6451	0.1306	Normal Distribution

Survival Rate Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.7849	0.7166	0.8531	0.5625	1	0.08967	0.1793	22.85%	0.0%
100		4	0.5889	0.5723	0.6056	0.5625	0.6538	0.0219	0.0438	7.44%	24.96%

Angular (Corrected) Transformed Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1.12	1.026	1.214	0.8481	1.445	0.1233	0.2466	22.02%	0.0%
100		4	0.8751	0.858	0.8922	0.8481	0.9418	0.02248	0.04496	5.14%	21.86%

Report Date: Test Code: 28 Jul-11 18:28 (p 1 of 1) 2E5F3F2C | 07-7799-4028

Ampelisca 10-d Survival Sediment Test

SPAWAR Systems Center

Analysis ID: 17-7521-7542 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 28 Jul-11 18:26 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpolation Options

X TransformY TransformSeedResamplesExp 95% CLMethodLog(X+1)Linear41733800200YesTwo-Point Interpolation

Point Estimates

 Level
 95% LCL
 95% UCL

 LC50
 >100
 N/A
 N/A

Survival	Rate Summary			Calculated Variate(A/B)							
Test Gro	oup Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	0.7849	0.5625	1	0.08967	0.1793	22.85%	0.0%	66	84
100		4	0.5880	0.5625	0.6538	0.0219	0.0438	7 44%	24 96%	50	84

Survival Rate Detail

Test Group	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Lab Control	0.8077	0.7692	0.5625	1
100		0.5769	0.6538	0.5625	0.5625

Marine Sediment Bioassay

Organism Survival

Client: Internal - Cu Availability Study Test Species: Ampelisca abdita

Ambient Sediment Samples Start Date/Time: 5/3/2014

End Date/Time: 5/ 13/ 2011 1300

Sample ID	Replicate	Initial No.	No. Recovered	Technician Initials Hish Surface Section (Decel)
	Α	28 30	21	Ø 100k 100d.
Lab Control	В	20 3V	20	3
	. С	20	9	3
Ampelisca Home Sed.	D	20	18	ı
	Α	29/ 30	* 17	
Shelter Island	В	20 30	13	16 - Black Sports -> de-
Official Island	С	20	11	6
	D	20	9	9 - Bluck Spots -
	Α	28 30	9	8 - Bkick 3003 -
Naval Base SD -	В	26 30	12	13 - Black spots -
Navai Dase 3D	С	20	le	8-Black 30073- 13-Black 30075-
	,D	20 -	7	8-BS
	Α	28 30	20	2
PSNS - 1	В	28 30	14	10
	С	20	ጸ'	6
(Bi) 8203 -	D	20	9	
	A	- 20 30	15	2
PSNS - 2	В	20 30	17	4
73N3-2	С	20	q'	S
(BD) 050 -	D	20	9	3
	А	20	21-	
	В	20		
	С	20		
	D	20	1	

QC Check:	JU 3	25/2011	Final Review:	
-----------	------	---------	---------------	--

10-Day . rrine Sediment Bioassay Static Conditions

Internal - Cu Availability Study Client:

Sample ID: Amp. Control

Test Species: Ampelisca abdita

13/2/2 Start Date/Time:

19 00 19

1300

5/13/2011 End Date/Time:

0)	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
	26.7	15.7	6.9	8,00	J.	
	29.3	L'h1	ه.ع	7.65	AC	THE REPORT OF THE PROPERTY OF
	29.1	15.3	90 90	7.72	77.	3 15 / Beed ment in Contract to
		1.27		7.78	00	in the second se
		L.&		7.87	3	
		1.61	A CONTRACTOR OF THE CONTRACTOR	7.96	2	TO THE PARTY OF TH
	29.3	13.7	(e.8	792	hc	Terret replantation in the state of the stat
	29.5	15.0	7.1	2.98	774	CONTRACTOR OF THE PROPERTY OF
	29.5	14.0	7.1	8.20	MC	
		15.3		8.14	3	T T T T T T T T T T T T T T T T T T T
	29.5	15.3	Le. 5	8.20	WC	THE STATE OF THE S

QC Check:

10-Day . rrine Sediment Bioassay Static Conditions

Internal - Cu Availability Study Client:

 $\widetilde{\wp}$ PS03 Sample ID: Bramarton

Test Species: Ampelisca abdita

Start Date/Time: 5/3/2011

00 b)

End Date/Time: $\sqrt{13/11}$

Comments			8-10 / # scal 841 10 Atical to 8-4 / 8 scal wind 8-4 Switch								
Technician Initials	אינכ	なり	MC	ĝ	Z	96	つわ	づ゙゙゙゙゙゚	つい	770	MC
pH (units)	8.03	8.00	8.00	8.03	01.9	6.3	8.17	8.12	8.35	8.39	8.48
Dissolved Oxygen (mg/L)	7.3	7.5	7.3				ا.ر	7.8	7.5		7.0
Temperature (°C)	6.41	14.3	14.2	12.9	13.7	13.7	13.7	14.7	<u> </u> - ታር	15.6	15.2
Salinity (ppt)	30.0	30.0	30.2				20.5	30.4	30.5		30.8 Mc
Test Day	0		2	3	4	5	9	7	œ	6	10

QC Check:

10-Day . rrine Sediment Bioassay Static Conditions

Internal - Cu Availability Study Client:

8 Sample ID: Brower ton PSO9.

Test Species: Ampelisca abdita

306) 5/2/2011 Start Date/Time:

1300

5/13/2011 End Date/Time:

Comments		THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PR	2.5 Sidiment sunface A+3	The state of the s	TO THE PROPERTY CONTRACTOR OF THE PROPERTY CONTR	PROPERTY CONTINUES AND	The same of the sa				The state of the s
Technician Initials	7,	Ne	JW	66	8	8	, DW	77	JH.	3	しな
pH (units)	8.01	P.01	802	8.04	80.8	00 00	8.09	8.10	8. 11	Ø . ₹	8.19
Dissolved Oxygen (mg/L)	1.8	o- r	8.0				۲.۲	7.9	8.0		7.7
Temperature (°C)	14.3	þ.PJ	14.3	12.5	13.4	13.60	7.21	14.0	14.3	6.3	14.0
Salinity (ppt)	20.5	30.3	30.3				30.4	30.3	30.4		30.08
Test Day	0	-	2	3	4	ស	ဖ	7	&	6	10

QC Check:

Marine Ploychaete

Neanthes arenaceodentata

Report Date: 27 Jul-11 15:51 (p 1 of 1) **Test Code:** 58FE136 | 00-9331-5382

									Test CO			· ·	- 3331-330
Neanthes Sur	vival and Growt	h Test									SPAV	VAR Syste	ms Center
Batch ID: Start Date: Ending Date: Duration:	19-1064-5197 03 May-11 14:3 31 May-11 09:0 27d 19h	30 P 00 S	est Type: rotocol: pecies: ource:	Farra Nean	r and Bridດ thes arena				Analyst Diluent: Brine: Age:	Sea	water Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:	11-3926-0850 28 Apr-11 29 Apr-11 09:0 5d 14h	0 S	code: faterial: cource: station:	Ambie Sedin	BDB2 ent Sedime nent Coppe S PS03	ent Sample er Tools			Client: Project:	_	WAR iment Coppe	r Tools - R	ound 1
Sample Note:	Both bulk sedir distributed to te							2mm up	oon rece	ipt in lab	. Homogeniz	ed sedimer	nt
Comparison S	Summary												
Analysis ID	Endpoint		NOEL	. 1	LOEL	TOEL	PMSD	TU	N	lethod			
05-2197-3227 13-0542-9912	Mean Dry Weig Survival Rate	ght-mg	100 100		>100 >100	N/A N/A	28.1% N/A			lnequal ∖ isher Exa	/ariance t Tw act Test	o-Sample ⁻	Test
Mean Dry Wei	ght-mg Summa	ry											
Test Group	Control Type	Count	Mean	9	95% LCL	95% UCL	Min	Max	s	td Err	Std Dev	CV%	%Effect
0 100	Lab Control	9 10	0.0049		0.004129 0.004811	0.005727 0.005401	0.00076 0.00394	0.007	_		1 0.00214 2 0.0007912	43.43% 15.5%	0.0% -3.62%
Survival Rate	Summary												
Test Group	Control Type	Count	Mean	ç	95% LCL	95% UCL	Min	Max	s	td Err	Std Dev	CV%	%Effect
0	Lab Control	10 10	0.9 1		0.7819 1	1 1	0	1 1	0	.1	0.3162 0	35.14% 0.0%	0.0% -11.11%
Mean Dry Wei	ght-mg Detail												
Test Group	Control Type	Rep 1	Rep 2	. F	Rep 3	Rep 4	Rep 5	Rep	6 R	ер 7	Rep 8	Rep 9	Rep 10
0 100	Lab Control	0.0024 0.0044		-	0.00519 0.00577	0.00419 0.00396	0.00647 0.00518	0.005		.00747 .00394	0.00662 0.0056	0.00076 0.00601	0.00502
Survival Rate	Detail												
Test Group	Control Type	Rep 1	Rep 2	. F	Rep 3	Rep 4	Rep 5	Rep	6 R	ер 7	Rep 8	Rep 9	Rep 10
0	Lab Control	1	1	()	1	1	1	1		1	1	1
100		1	1	•	1	1	1	1	1		1	1	1

Report Date: Test Code: 27 Jul-11 15:51 (p 1 of 1) 58FE136 | 00-9331-5382

Neanthes Survival and Growth Test

SPAWAR Systems Center

Analysis ID: 13-0542-9912 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 27 Jul-11 14:37 Analysis: Single 2x2 Contingency Table Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result
Untransformed		C > T	Not Run	Sample passes survival rate endpoint

Fisher Exact Test

Control	vs	Test Group	Test Stat	P-Value	Decision(0.05)
Lab Control		100	1	1.0000	Non-Significant Effect

Data Summary

Test Group	Control Type	No-Resp	Resp	Total
0	Lab Control	9	1	10
100		10	0	10

Report Date: Test Code: 27 Jul-11 15:50 (p 1 of 1) 58FE136 | 00-9331-5382

Neanthes Survival and Growth Test

SPAWAR Systems Center

Analysis ID: 05-2197-3227 Endpoint: Mean Dry Weight-mg CETIS Version: CETISV1.8.1

Analyzed: 27 Jul-11 14:38 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Untransformed	0	C > T	Not Run	Sample passes mean dry weight-mg endpoint	28.1%

Unequal Variance t Two-Sample Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(a:5%)
Lab Control		100	-0.2357	1.833	9	0.001386	0.5905	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	1.504654E-07	1.504654E-07	1	0.0605	0.8087	Non-Significant Effect
Error	4.227953E-05	2.487031E-06	17			
Total	0.00004243	2.637497E-06	18			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	7.318	6.693	0.0073	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.9323	0.8605	0.1913	Normal Distribution

Mean Dry Weight-mg Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	9	0.004928	0.004114	0.005742	0.00076	0.00747	0.0007134	0.00214	43.43%	0.0%
100		10	0.005106	0.004805	0.005407	0.00394	0.00611	0.0002502	0.0007912	15.5%	-3.62%

Report Date: 27 Jul-11 15:52 (p 1 of 1) **Test Code:** 10B86867 | 02-8052-0807

								10	ssi Coue.		1000001 0	2 0002 000		
Neanthes Sur	vival and Growt	h Test								SF	AWAR Syste	ems Cente		
Batch ID: Start Date: Ending Date: Duration:	19-1064-5197 03 May-11 14:3 31 May-11 09:0 27d 19h	80 Pr 90 Sp	Test Type: Protocol: Species: Source:		Survival-Growth Farrar and Bridges 2011 Neanthes arenaceodentata Aquatic Toxicology Support				rine:	seawater lot Applicabl d	Э			
Sample ID: Sample Date: Receive Date: Sample Age:	29 Apr-11 09:00		ode: aterial: ource: ation:	1D803480 : Ambient Sedim Sediment Copp PSNS PS09				_		SPAWAR Sediment Copper Tools - Round 1				
Sample Note:	Both bulk sedim distributed to te							2mm upo	n receipt in	ab. Homoge	nized sedime	nt		
Comparison S	Summary													
Analysis ID	Endpoint		NOEL	_	LOEL	TOEL	PMSD	TU	Metho	d				
13-3531-0838 15-6033-2933	Mean Dry Weight-mg Survival Rate		100 100	>100 N/A 29.0% >100 N/A N/A					•	Equal Variance t Two-Sample Test Fisher Exact Test				
Mean Dry Wei	ght-mg Summa	ry												
Test Group	Control Type	Count	Mean	ı	95% LCL	95% UCL	Min	Max	Std Er	Std De	CV%	%Effec		
0	Lab Control	9	0.004	928	0.004129	0.005727	0.00076	0.0074	7 0.0007	134 0.00214	43.43%	0.0%		
100		10	0.004	682	0.004161	0.005203	0.00105	0.0060	4 0.0004	413 0.00139		4.99%		
Survival Rate	Summary													
Test Group	Control Type	Count	Mean	ı	95% LCL	95% UCL	Min	Max	Std Er	Std De	CV%	%Effec		
0	Lab Control	10	0.9		0.7819	1	0	1	0.1	0.3162	35.14%	0.0%		
100		10	1		1	1	1	1	0	0	0.0%	-11.11%		
Mean Dry Wei	ght-mg Detail													
Test Group	Control Type	Rep 1	Rep 2	2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
0	Lab Control	0.00247	0.005	45	0.00519	0.00419	0.00647	0.0057	3 0.0074	7 0.00662	0.00076	-		
100		0.00604	0.005	63	0.00444	0.00437	0.00545	0.0054	5 0.0049	4 0.00442	0.00503	0.00105		
Survival Rate	Detail													
		Rep 1	Rep 2	2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
Test Group	Control Type	itch i												
Test Group	Lab Control	1	1		0	1	1	1	1	1	1	1		

Report Date: Test Code: 27 Jul-11 15:52 (p 1 of 1) 10B86867 | 02-8052-0807

Neanthes Survival and Growth Test

SPAWAR Systems Center

Analysis ID: 15-6033-2933 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 27 Jul-11 15:36 Analysis: Single 2x2 Contingency Table Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result
Untransformed		C > T	Not Run	Sample passes survival rate endpoint

Fisher Exact Test

Control	vs	Test Group	Test Stat	P-Value	Decision(0.05)
Lab Control		100	1	1.0000	Non-Significant Effect

Data Summary

Test Group	Control Type	No-Resp	Resp	Total
0	Lab Control	9	1	10
100		10	0	10

Graphics

Report Date: Test Code: 27 Jul-11 15:52 (p 1 of 1) 10B86867 | 02-8052-0807

Neanthes Survival and Growth Test

SPAWAR Systems Center

Analysis ID: 13-3531-0838 Endpoint: Mean Dry Weight-mg CETIS Version: CETISV1.8.1

Analyzed: 27 Jul-11 15:36 Analysis: Parametric-Two Sample Official Results: Yes

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Untransformed	0	C > T	Not Run	Sample passes mean dry weight-mg endpoir	t 29.0%

Equal Variance t Two-Sample Test

Control	vs	Test Group	Test Stat	Critical	DF	MSD	P-Value	Decision(α:5%)
Lab Control		100	0.2997	1.74	17	0.001427	0.3840	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	2.861617E-07	2.861617E-07	1	0.0898	0.7681	Non-Significant Effect
Error	5.417202E-05	3.18659E-06	17			
Total	5.445819E-05	3.472751E-06	18			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	2.352	6.693	0.2244	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.8732	0.8605	0.0164	Normal Distribution

Mean Dry Weight-mg Summary

Test Group	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	9	0.004928	0.004114	0.005742	0.00076	0.00747	0.0007134	0.00214	43.43%	0.0%
100		10	0.004682	0.004151	0.005213	0.00105	0.00604	0.0004413	0.001395	29.81%	4.99%

Graphics

Client: Internal - Cu Availability Study	Test Species: N. arenaceodentata
Ambient Sediment Samples	Start Date/Time:
	End Date/Time:

Sample ID	Replicate	Initial No.	No. Recovered	Pan Weight (mg)	Pan + Org. Weight (mg) WET	DRY 🐧	Technician Initials
	Α	1	ì	1.20179		1,20542 1,05683	
	В	1	ì	1.05324		1,05683	
	С	1	ţ	1.15 351		1015545	
	D .	1	t	1.19365		1019414	
Shelter Island	E	1	j	1.09436		1.09398	
ا حکا	F	1	1	1.13763		1,14173	
(SI)	G	1	.)	0.99 341		0.99725	
1	H	1		1.23698		1.23922	
]	<u> </u>	1		1,24023		1024339	
	J	1	ì	1.16/14		1.16530	
<u> </u>	Α	1	β	120/62		1.20498	
	В	1	7	1.15 9 29		1.16368	
	С	1	<u> </u>	1.13636		1013928	
	D	1	<u> </u>	1.11471		1.11644	
Naval Base SD	E	1	!	1.13 801		1.14160	,
(NB)	F	1		1.17650		1018066	
	G	1		1.18 646		1. 19 144	
	Н	1		1.13461		1.13897	
ļ. <u> </u>	<u> </u>	1	<u> </u>	1.16520		1.16813	
	J	1		1.16015		1016416	
	А	1		1.17409	1017854		
_	В	1		1.15 708	1.16210	4.20029	
	С	1		1.30 240		4-14042	
_	D	1		1.05658	1.06054	<i>-</i>	
PSNS - 1	E	1	1	1.13384	1013902	£	
	F	1		1.11611	1.12222	-	
(B1)	G	1		1.17535	1.17929	<i>t</i> -	
	Н	1		1.25224	1.25 784	<u> </u>	
-	<u> </u>	1		1.11 449	1.12090	Z	
	J	1	/	1.11 407	1-11909		
	Α	1	<u> </u>	1.19083		1.19686	
1	В	1	!	1,19466		1.20029	
-	C	1	!	1.13608		1.14042	
	D	1	<u>ļ</u>	1.13247		1-13684	
PSNS - 2	E	1	<u>!</u>	1.17 211		1.17756	
(BZ)	F	1	. 1	1.12455		1.13000	
(04)	G	1	1	1.18 611		1,19105	
_	<u>H</u>	1		1.12150		1012592	
***************************************	<u> </u>	1		1,12573		1-13076	
1	J	1 1	1	1,08 371		1.08482	

verysmall

QC Check:	Final Review:
Q0 0	 *·····

Signed.

Date

Client	

Internal - Cu Availability Study

nple ID;

Bremerton	PS03-	BI	

Test Species: N. arenaceodentata

Start Date/Time: 5|3|20|1 1(000

End Date/Time; _

Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	ρΗ (units)	Fed	Water Change	NH ₃ Analysis	Technician Initials	Comments
0	30.1	19.8	5.8	7.84	4	N	√	ne	
1	30.4	19.9	6.0	7.93				ис	
2	30.5	199	6.4	8-16				MC	
3		19.9		8.15	Y	N	BL.	ce	
4		20.0		8.24	M	N		cc	
5		19.9		8.59	N	N		CC	
6	30.8	19.8	5.60	8.86	2			мс	
7	30.7	19.9	5.8	8.89	4	Ч		MC	
8	305	19.8	6.5	9.00	N	N		nc	
9	30.7	19.9	6-12	9.05	N	N		CC	
10	30.4	198	6.4	9.18	Y	N		MC	
11	30.5	19.3	(0.7	8.83	N	$oxed{egin{array}{c} oldsymbol{arphi} \end{array}}$		mc.	
12		19.9		8.91	N	<u>i</u>		OC/	
13	30.9	19.9	6.8	8.94	2	12		NC	
14	27.8	20.0	5.59	8.82	7	Y		CC	
15	No. a series		7.0°C	/					
16	28.0	19.7	7.0	8.68	N	N		ce	
17		20.1		8.38				ZA.	
18	28.7	19.9	6.7	8.38	닝	my p		ne	
19	28.5	19.8	le.9	8-36	Valley			uc	
20	28.6	99	1.2	8.41				ne	
21	29.1	20.0	6.3	8,23	y	4		MC	
22	30.1	19.9	6.8	8-10				nc	
23	29.5	20.1	6.01	8.36	N	N		ac	
24	29.8	20.0	6.9	8-24	ALC: YES	M		MC	
25									
26	30.1	20.1	7.2	8.32				HC	
27	1 12 181								
28	30.0	199	Le.5	8.360			Ч	MC	

QC Check:	Final Review:	

CI	lent.

Internal - Cu Availability Study

τple ID:

Bremerton	18509	· B2-	

Test Species: N. arenaceodentata

Start Date/Time: 33 2011 1600

End Date/Time:

Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Fed	Water Change	NH ₃ Analysis	Technician Initials	Comments
0	30.2	19.7	5.4	7.83	7	N	W	uc	
1	30.8	19.9	6.2	80.8				MC	
2	80.5	20.1	6.4	8.03				nc nc	
3		19.7		7.91	Y	N		cc	
4		19.9	1	7.86	N	N		ce	
5		19.8		8.03	N	N		U	
6	30.8	19.7	61	8,17	2	ر ا		Me	
7	30.7	19.9	6.3	8.21	y	y		MC	
8	29.9	19.7	67	8.21	2	N		MC	
9	30.7	19.7	6.62	8.21	M	X/		ac	
10	30.8	19.7	45	8.31	Y	N N		MC	
11	30-9	9.5	6.7	820	<i>N</i>	N		ce	
12		19.8		8.32	N	N			/
13	31.2	19.8	٦١	8.27	N	P		MC	
14	28.4	19.8	5.01	8.29	Y	Y		cc	
15				h-tamprorene r					
16	28.10	19.5	6.5	8.16	M	N		CC	
17		20.0		8.08				Er	
18	19.3	19.9	66	8.13	4	mcy N		MC	
19	291	199	6.8	8.14				MC	
20	29.1	20.0	69	8.17				MC	
21	19.0	19.8	65	8.26	y	y		uc	
22	29.9	201	6.7	8.14	· · · · · · · · · · · · · · · · · · ·			me	
23	1543D.0	19.9	6.5	8.22	N	$ \mathcal{U} $		œ	
24	30.1	20.1	6.8	8.18	y	6		мс	
25									
26	30.3	20.0	69	8.21				MC	
27			The party						
28	31.1	19.8	6.4	8.28			y	NC	

QC Check:	Final Review

Appendix B

Reference Toxicant Test Data and Statistical Summaries

CETIS Summary Report

Report Date: 27 Oct-16 15:29 (p 1 of 2) **Test Code:** 3DF06D2F | 10-3916-6767

Bivalve Larva	I Survival and D	evelopmen	t Test						SPA	WAR Syste	ms Center
Batch ID: Start Date: Ending Date: Duration:	11-0713-8919 03 May-11 20:0 05 May-11 18:0 46h	0 Prot	ocol: :ies:	Development-S EPA/600/R-95/ Mytilis gallopro Carlsbad Aquat	136 (1995) vincialis		Dil	uent: L ne: N	larienne A Col aboratory Sea ot Applicable a		
Sample ID: Sample Date: Receive Date: Sample Age:	•	Code Mate Sour Stati	rial: ce:	7E1C7096 Copper sulfate Reference Toxi Reference Toxi					AVSEA ediment Copp	er Tools - R	ound 1
Batch Note:	SWI - Sediment pure DI water.	t Water Inter	face Te	est. Overlying W	ater consist	ed of 0.45µr	n filter lab	oratory sea	awater diluted t	to 30ppt wit	n Nano-
Comparison	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method	i		
15-4993-3967	Combined Prop	ortion Norm	8.4	12	10.04	20.6%		Bonferr	oni Adj t Test		
02-9314-7267	Proportion Norn	nal	8.4	12	10.04	13.5%		Wilcox	on/Bonferroni A	Adj Test	
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Method	i		
01-3687-9098	Combined Prop	ortion Norm	EC50	10.22	8.939	10.79		Linear I	Regression (M	LE)	
16-9997-0667	Proportion Norn	nal	EC50	9.86	9.484	10.23		Linear I	Regression (M	LE)	
Test Acceptal	oility										
Analysis ID	Endpoint		Attribu	ute	Test Stat	TAC Limi	ts	Overla	Decision		
02-9314-7267	Proportion Norn	nal	Contro	l Resp	0.8321	0.9 - NL		Yes	Below Acc	ceptability C	riteria
16-9997-0667	Proportion Norn	nal	Contro	ol Resp	0.8321	0.9 - NL		Yes	Below Acc	ceptability C	riteria
15-4993-3967	Combined Prop	ortion Norm	PMSD		0.2056	NL - 0.25		No	Passes A	cceptability	Criteria
Combined Pr	oportion Normal	Summary									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.5087	0.4375	0.5799	0.4627	0.5622	0.0223	3 0.04475	8.8%	0.0%
2.9		5	0.5522	0.4945	0.61	0.4826	0.602	0.0208	0.04654	8.43%	-8.56%
4.1		5	0.5821	0.5342	0.6299	0.5373	0.6269	0.0172	0.03854	6.62%	-14.43%
5.8		5	0.6189	0.5403	0.6975	0.5124	0.6716	0.0283	0.06328	10.23%	-21.66%
8.4		5	0.5493	0.4565	0.642	0.4925	0.6766	0.0334	0.07468	13.6%	-7.97%
12		5	0.0388	31 0	0.08147	0.01493	0.08955	0.0153	7 0.03436	88.55%	92.37%
17.2		4	0	0	0	0	0	0	0		100.0%
Proportion No	ormal Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	0.8321	0.7681	0.8962	0.7737	0.8661	0.02014	1 0.04027	4.84%	0.0%
				0.9142	0.9633	0.9151	0.9646	0.0088	0.01974	2.1%	-12.81%
2.9		5	0.9388	0.3142							
4.1		5	0.9388		0.9942	0.9153	0.9919	0.0140		3.29%	-14.78%
4.1 5.8		5 5		0.9161 0.9283	0.9942 0.9419	0.9279	0.9403	0.0140 0.0024		3.29% 0.59%	-12.38%
4.1 5.8 8.4		5 5 5	0.9551 0.9351 0.8055	0.9161 0.9283 0.6837	0.9942	0.9279 0.6897	0.9403 0.9		18 0.005474 7 0.09809		
4.1 5.8		5 5	0.9551 0.9351	0.9161 0.9283 0.6837	0.9942 0.9419	0.9279	0.9403	0.0024	18 0.005474 7 0.09809	0.59%	-12.38%

 Report Date:
 27 Oct-16 15:29 (p 2 of 2)

 Test Code:
 3DF06D2F | 10-3916-6767

							rest Code:	3DF06D2F 10-3916-676
Bivalve La	rval Survival and [Developmer	nt Test					SPAWAR Systems Center
Combined	Proportion Norma	ıl Detail						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	0.5622	0.4826	0.5274	0.4627			
2.9		0.5423	0.5871	0.602	0.5473	0.4826		
4.1		0.5473	0.6269	0.607	0.592	0.5373		
5.8		0.6716	0.6617	0.6219	0.5124	0.6269		
8.4		0.4975	0.6766	0.4925	0.5373	0.5423		
12		0.01493	0.01493	0.0597	0.01493	0.08955		
17.2		0	0	0	0			
Proportion	Normal Detail							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
)	Lab Control	0.8433	0.8661	0.7737	0.8455			
2.9		0.9646	0.9291	0.9528	0.9322	0.9151		
4.1		0.9322	0.9767	0.9919	0.9597	0.9153		
5.8		0.931	0.9366	0.9398	0.9279	0.9403		
3.4		0.6897	0.8947	0.7174	0.9	0.8258		
12		0.0303	0.0283	0.09917	0.03333	0.1607		
17.2		0	0	0	0			
Combined	Proportion Norma	I Binomials	5					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
)	Lab Control	113/201	97/201	106/201	93/201			
2.9		109/201	118/201	121/201	110/201	97/201		
4.1		110/201	126/201	122/201	119/201	108/201		
5.8		135/201	133/201	125/201	103/201	126/201		
3.4		100/201	136/201	99/201	108/201	109/201		
12		3/201	3/201	12/201	3/201	18/201		
17.2		0/201	0/201	0/201	0/201			
Proportion	Normal Binomials	5						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	113/134	97/112	106/137	93/110			
2.9		109/113	118/127	121/127	110/118	97/106		
4.1		110/118	126/129	122/123	119/124	108/118		
5.8		135/145	133/142	125/133	103/111	126/134		
8.4		100/145	136/152	99/138	108/120	109/132		
12		3/99	3/106	12/121	3/90	18/112		

Report Date: 27 Oct-16 15:29 (p 4 of 6) **Test Code:** 3DF06D2F | 10-3916-6767

Bivalve Larva	I Survival and D	evelop	ment Test							SPAV	VAR Syste	ms Center
Analysis ID: Analyzed:	02-9314-7267 27 Oct-16 15:2		Endpoint: Analysis:	Proportion No Nonparametri		e Cor	mparison		IS Version: cial Results		.8.7	
Batch ID: Start Date: Ending Date: Duration:	11-0713-8919 03 May-11 20:0 05 May-11 18:0 46h	00 I	-	Development- EPA/600/R-99 Mytilis gallopr Carlsbad Aqu	5/136 (19 ovincialis	,		Anal Dilu Brin Age:	ent: Lab e: Not	ienne A Colv oratory Seav Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:	:	! :	Code: Material: Source: Station:	7E1C7096 Copper sulfat Reference To Reference To	xicant			Clier Proj		/SEA liment Coppe	er Tools - F	Round 1
Batch Note:	SWI - Sedimen pure DI water.	t Water	Interface Te	est. Overlying \	Water co	nsist	ed of 0.45µ	m filter labo	ratory seaw	ater diluted t	o 30ppt wit	h Nano-
Data Transfor	·m	Zeta	Alt H	yp Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA			13.5%	8.4	12	10.04	
Wilcoxon/Bor	nferroni Adj Tes	t										
Control	vs C-μg/L		Test S	Stat Critical	Ties	DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.9		35	NA	0	7	1.0000	Exact		ificant Effect		
	4.1		35	NA	0	7	1.0000	Exact	_	ificant Effect		
	5.8		35	NA	0	7	1.0000	Exact	_	ificant Effect		
	8.4		24	NA	0	7	1.0000	Exact	-	ificant Effect		
	12*		15	NA	0	7	0.0397	Exact	Significar			
Test Acceptal	nility Criteria											
Attribute	-	TAC L	imite	Overlap	Deci	sion						
Control Resp	0.8321	0.9 - N		Yes			ceptability C	Criteria				
ANOVA Table												
Source	Sum Squ	ares	Mean	Square	DF		F Stat	P-Value	Decision	(α:5%)		
Between	4.444386		0.888		5		132.4	<0.0001	Significan	<u> </u>		
Error	0.154369			711697	23				3 3			
Total	4.598755				28		_					
Distributional	Tests											
Attribute	Test			Test Sta	t Critic	al	P-Value	Decision	(α:1%)			
Variances		quality o	of Variance	16.44	15.09		0.0057	Unequal \				
Distribution	Shapiro-V			0.98	0.900		0.8390	Normal D				
Proportion No	ormal Summary	-										
C-µg/L	Control Type	Count	t Mean	95% LCI	L 95%	UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.832	1 0.7681	0.896	2	0.8444	0.7737	0.8661	0.02014	4.84%	0.0%
2.9		5	0.9388	0.9142	0.963		0.9322	0.9151	0.9646	0.00883	2.1%	-12.81%
4.1		5	0.955	1 0.9161	0.994		0.9597	0.9153	0.9919	0.01406	3.29%	-14.78%
5.8		5	0.935	1 0.9284	0.941		0.9366	0.9279	0.9403	0.002448	0.59%	-12.38%
8.4		5	0.805		0.927	'3	0.8258	0.6897	0.9	0.04387	12.18%	3.2%
12		5	0.070	37 0	0.143	31	0.03333	0.0283	0.1607	0.02621	83.29%	91.54%
17.2		4	0	0	0		0	0	0	0		100.0%

Report Date: 27 Oct-16 15:29 (p 5 of 6) **Test Code:** 3DF06D2F | 10-3916-6767

								Coue.			-3910-0707
Bivalve Larva	al Survival and [Developmer	nt Test						SPAV	VAR Syste	ms Center
Analysis ID:	02-9314-7267	End	point: Pro	portion Norr	 mal		CET	S Version:	CETISv1.	8.7	
Analyzed:	27 Oct-16 15:2			nparametric-		mparison		ial Results:	Yes		
Angular (Cor	rected) Transfor	med Summ	ary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.15	1.067	1.234	1.165	1.075	1.196	0.02617	4.55%	0.0%
2.9		5	1.323	1.271	1.376	1.307	1.275	1.382	0.01904	3.22%	-15.04%
4.1		5	1.37	1.267	1.473	1.369	1.275	1.481	0.03698	6.04%	-19.08%
5.8		5	1.313	1.3	1.327	1.316	1.299	1.324	0.004946	0.84%	-14.17%
8.4		5	1.124	0.968	1.28	1.14	0.9799	1.249	0.05618	11.18%	2.3%
12		5	0.2521	0.1162	0.388	0.1836	0.169	0.4125	0.04895	43.42%	78.09%
17.2		4	0.0556	0.052	0.05921	0.05576	0.05273	0.05816	0.001132	4.07%	95.17%
Proportion N	lormal Detail										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8433	0.8661	0.7737	0.8455						
2.9		0.9646	0.9291	0.9528	0.9322	0.9151					
4.1		0.9322	0.9767	0.9919	0.9597	0.9153					
5.8		0.931	0.9366	0.9398	0.9279	0.9403					
8.4		0.6897	0.8947	0.7174	0.9	0.8258					
12		0.0303	0.0283	0.09917	0.03333	0.1607					
17.2		0.0000	0.0200	0.05517	0.00000	0.1007					
	rected) Transfor										
`	•		Bon 2	Don 2	Don 4	Bon E					
C-μg/L 0	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
_	Lab Control	1.164	1.196	1.075	1.167	4.075					
2.9		1.382	1.301	1.352	1.307	1.275					
4.1		1.307	1.418	1.481	1.369	1.275					
5.8		1.305	1.316	1.323	1.299	1.324					
8.4		0.9799	1.24	1.01	1.249	1.14					
12		0.175	0.169	0.3204	0.1836	0.4125					
17.2		0.05816	0.05524	0.05273	0.05628						
Proportion N	Iormal Binomials	•									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	113/134	97/112	106/137	93/110						
2.9		109/113	118/127	121/127	110/118	97/106					
4.1		110/118	126/129	122/123	119/124	108/118					
5.8		135/145	133/142	125/133	103/111	126/134					
8.4		100/145	136/152	99/138	108/120	109/132					
12		3/99	3/106	12/121	3/90	18/112					
17.2		0/74	0/82	0/90	0/79						
17.2		J/ I ¬	5/52	3,00	5/10						

Report Date: Test Code: 27 Oct-16 15:29 (p 6 of 6) 3DF06D2F | 10-3916-6767

Bivalve Larval Survival and Development Test SPAWAR Systems Center CETISv1.8.7 Analysis ID: 02-9314-7267 **Endpoint:** Proportion Normal **CETIS Version:** Analyzed: 27 Oct-16 15:28 Analysis: Nonparametric-Multiple Comparison Official Results: Yes **Graphics** -0.12 0.10 0.00 -0.02 -0.04 -0.08 -0.10 -0.12 0.1 -0.18 C-µg/L

Report Date: 27 Oct-16 15:29 (p 1 of 6) **Test Code:** 3DF06D2F | 10-3916-6767

Bivalve Larva	I Survival and D	evelopme	nt Test						SPA	WAR Syste	ms Center
Analysis ID: Analyzed:	15-4993-3967 27 Oct-16 15:2		•	Combined Prop Parametric-Mul				S Version:		.8.7	
Batch ID: Start Date: Ending Date: Duration:	11-0713-8919 03 May-11 20:0 05 May-11 18:0 46h	00 Pro	otocol: E ecies: N	Development-S EPA/600/R-95/ Mytilis galloprov Carlsbad Aquaf	136 (1995) vincialis		Anal Dilue Brine Age:	ent: Lab e: Not	rienne A Col oratory Sea Applicable		
Sample ID: Sample Date: Receive Date: Sample Age: Batch Note:	20h	Ma So Sta	terial: (urce: F ation: F	ZE1C7096 Copper sulfate Reference Toxio	cant	ad of 0.45u	Clier Proje	ect: Sed	/SEA liment Copp		
Batch Note.	SWI - Sedimen pure DI water.	it vvater iiii	enace res	st. Overlying w	ater consist	eu oi o.43µ	III liitei laboi	latory seaw	ater unuteu	to Soppi wit	II Nano-
Data Transfor		Zeta	Alt Hy		Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	cted)	NA	C > T	NA	NA		20.6%	8.4	12	10.04	
Bonferroni Ad	lj t Test										
Control	vs C-μg/L		Test St	at Critical	MSD DF	P-Value	P-Type	Decision	,		
Lab Control	2.9 4.1 5.8 8.4		-1.039 -1.756 -2.66 -0.9813	2.5 2.5 2.5 2.5	0.105 7 0.105 7 0.105 7 0.105 7	1.0000 1.0000 1.0000 1.0000	CDF CDF CDF	Non-Sign	ificant Effect ificant Effect ificant Effect ificant Effect	: :	
	12*		14.5	2.5	0.105 7	<0.0001	CDF	Significan	t Effect		
Test Acceptat	oility Criteria										
Attribute	Test Stat	TAC Lim	its	Overlap	Decision						
PMSD	0.2056	NL - 0.25	;	No	Passes Ad	cceptability	Criteria				
ANOVA Table											
Source	Sum Squ	ares	Mean S	guare	DF	F Stat	P-Value	Decision	(α:5%)		
Between Error Total	1.872349 0.0905835 1.962932		0.37446 0.00393	398	5 23 28	95.08	<0.0001	Significan	· · · · · · · · · · · · · · · · · · ·		
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances		quality of \	/ariance	3.464	15.09	0.6288	Equal Var	<u> </u>			
Distribution	Shapiro-\	Wilk W Nor	mality	0.9672	0.9004	0.4857	Normal Di	stribution			
Combined Pro	portion Norma	l Summar	y								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.5087	0.4375	0.5799	0.505	0.4627	0.5622	0.02238	8.8%	0.0%
2.9		5	0.5522	0.4945	0.61	0.5473	0.4826	0.602	0.02081	8.43%	-8.56%
4.1		5	0.5821	0.5342	0.6299	0.592	0.5373	0.6269	0.01723	6.62%	-14.43%
5.8		5	0.6189	0.5403	0.6975	0.6269	0.5124	0.6716	0.0283	10.23%	-21.66%
8.4		5	0.5493	0.4565	0.642	0.5373	0.4925	0.6766	0.0334	13.6%	-7.97%
12		5	0.0388		0.08147	0.01493	0.01493	0.08955	0.01537	88.55%	92.37%
17.2		4	0	0	0	0	0	0	0		100.0%

Report Date: Test Code:

27 Oct-16 15:29 (p 2 of 6) 3DF06D2F | 10-3916-6767

Bivalve Larva	al Survival and D	evelopmen	t Test						SPA	WAR Syste	ms Center
Analysis ID: Analyzed:	15-4993-3967 27 Oct-16 15:2		•	mbined Prop				S Version:	CETISv1 Yes	.8.7	
Angular (Cor	rected) Transfor	med Summ	ary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.7941	0.7228	0.8655	0.7904	0.7481	0.8477	0.02242	5.65%	0.0%
2.9		5	0.8379	0.7798	0.896	0.8327	0.768	0.8881	0.02093	5.59%	-5.51%
4.1		5	0.8681	0.8195	0.9166	0.878	0.8227	0.9137	0.01748	4.5%	-9.31%
5.8		5	0.9061	0.8259	0.9863	0.9137	0.7978	0.9606	0.02888	7.13%	-14.1%
8.4		5	0.8354	0.7407	0.9302	0.8227	0.7779	0.9659	0.03414	9.14%	-5.2%
12		5	0.1836	0.07667	0.2906	0.1225	0.1225	0.3039	0.03852	46.91%	76.88%
17.2		4	0.03527	0.03526	0.03529	0.03527	0.03527	0.03527	0	0.0%	95.56%
Combined Pr	oportion Norma	l Detail									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.5622	0.4826	0.5274	0.4627						
2.9		0.5423	0.5871	0.602	0.5473	0.4826					
4.1		0.5473	0.6269	0.607	0.592	0.5373					
5.8		0.6716	0.6617	0.6219	0.5124	0.6269					
8.4		0.4975	0.6766	0.4925	0.5373	0.5423					
12		0.01493	0.01493	0.0597	0.01493	0.08955					
17.2		0	0	0	0						
Angular (Cor	rected) Transfor	med Detail									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8477	0.768	0.8128	0.7481	•					
2.9		0.8277	0.8729	0.8881	0.8327	0.768					
4.1		0.8327	0.9137	0.8932	0.878	0.8227					
5.8		0.9606	0.95	0.9085	0.7978	0.9137					
8.4		0.7829	0.9659	0.7779	0.8227	0.8277					
12		0.1225	0.1225	0.2468	0.1225	0.3039					
17.2		0.03527	0.03527	0.03527	0.03527	0.000					
Combined Pr	oportion Norma	l Binomials									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	113/201	97/201	106/201	93/201						
2.9		109/201	118/201	121/201	110/201	97/201					
4.1		110/201	126/201	122/201	119/201	108/201					
5.8		135/201	133/201	125/201	103/201	126/201					
8.4		100/201	136/201	99/201	108/201	109/201					
12		3/201	3/201	12/201	3/201	18/201					
17.2		0/201	0/201	0/201	0/201	10/201					
11.4		0/201	0/201	0/201	0/201						

Report Date: Test Code: 27 Oct-16 15:29 (p 3 of 6) 3DF06D2F | 10-3916-6767

Bivalve Larval Survival and Development Test SPAWAR Systems Center Endpoint: Combined Proportion Normal CETISv1.8.7 Analysis ID: 15-4993-3967 **CETIS Version:** Analyzed: 27 Oct-16 15:28 Analysis: Parametric-Multiple Comparison Official Results: Yes **Graphics** 0.14 -0.02 -0.04 0.2 -0.08 0.1 -0.12 C-µg/L

 Report Date:
 27 Oct-16 15:29 (p 3 of 5)

 Test Code:
 3DF06D2F | 10-3916-6767

						1631 0		3D1 00D21 10-3310-0707
Bivalve Larval	Survival and De	velopment Test						SPAWAR Systems Center
Analysis ID:	16-9997-0667	Endpoint:	Proportion Nor	mal		CETIS	Version:	CETISv1.8.7
Analyzed:	27 Oct-16 15:28	Analysis:	Linear Regress			Officia	l Results:	Yes
Batch ID:	11-0713-8919	Tost Type:	Development-S	Survival		Analys	et. Marie	enne A Colvin
Start Date:	03 May-11 20:00	• •	EPA/600/R-95/			Diluen		ratory Seawater
Ending Date:	05 May-11 18:00		Mytilis gallopro	` ,		Brine:		Applicable
Duration:	46h	Source:	Carlsbad Aqua					фріісавіе
Duration.	4011	Source.	Carisbau Aqua	Iaiiii		Age:	na	
Sample ID:	21-1579-3046	Code:	7E1C7096			Client	: NAV	SEA
Sample Date:	03 May-11	Material:	Copper sulfate			Projec	t: Sedir	ment Copper Tools - Round 1
Receive Date:		Source:	Reference Toxi	icant				
Sample Age:	20h	Station:	Reference Toxi	icant				
Batch Note:	SWI - Sediment \ pure DI water.	Water Interface Te	est. Overlying W	/ater consiste	ed of 0.45µm	n filter labora	tory seawat	ter diluted to 30ppt with Nano-
Linear Regres	sion Options							
Model Function	on	Thres	hold Option	Threshold	Optimized	Pooled	Het Corr	Weighted
Log-Normal [NI	ED=A+B*log(X)]	Contro	ol Threshold	0.170385	Yes	No	Yes	Yes
Regression Su	ummary							
Iters LL	AICc	BIC Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision(α:5%)
5 -1140		2291 0.9939		0.9369	5.976		0.0015	Significant Lack of Fit
Point Estimate								
Level µg/L		95% UCL						
EC50 9.86	9.484	10.23						
Test Acceptab	ility Criteria							
Attribute	Test Stat	TAC Limits	Overlap	Decision				
Control Resp	0.8321	0.9 - NL	Yes	Below Acc	eptability Cr	iteria		
Regression Pa	arameters							
Parameter		Std Error 95% L	.CL 95% UCL	t Stat	P-Value	Decision(α	·5%)	
Threshold		0.01224 0.0554		6.574	<0.0001	Significant I		
Slope		1.649 13.09	19.83	9.978	<0.0001	Significant I		
Intercept		1.652 -19.73		-9.9	<0.0001	Significant I		
ANOVA Table	0		DE	E 04 4	D \/-:	Bank 1	- F 0/)	
Source	Sum Squar	<u> </u>		F Stat	P-Value	Decision(α	:5%)	
Model	2277.623	2277.623	1	477.1 5.076	<0.0001	Significant		
Lack of Fit Pure Error	68.60464 74.62022	17.15116 2.870008	4 26	5.976	0.0015	Significant		
Residual	74.62022 143.2249	4.774162	30					
Residual Anal								
Attribute	Method		Test Stat	Critical	P-Value	Decision(α	:5%)	
Goodness-of-F		i-Sq GOF	143.2	43.77	<0.0001	Significant I		у
	Likelihood R	•	135.9	43.77	<0.0001	Significant I	•	
Variances		ality of Variance	51.52	12.59	<0.0001	Unequal Va	•	-
	Mod Levene	Equality of Varia		2.573	0.0187	Unequal Va		
Distribution	Shapiro-Will	k W Normality	0.9443	0.9354	0.0908	Normal Dist		
	Anderson-D	arling A2 Normalit	ty 0.7333	2.492	0.0557	Normal Dist	ribution	

Report Date: Test Code: 27 Oct-16 15:29 (p 4 of 5) 3DF06D2F | 10-3916-6767

							Test	Code:	ושנ	00021 1	0-3916-6767
Bivalve Larv	val Survival and D	evelopmen	nt Test						SPA	NAR Syst	ems Center
Analysis ID:	16-9997-0667	End	point: Pro	portion Nor	mal		CETI	S Version:	CETISv1	.8.7	
Analyzed:	27 Oct-16 15:2	8 Ana	lysis: Line	ear Regress	sion (MLE)		Offic	ial Results:	Yes		
Proportion	Normal Summary				Calcu	ılated Variat	te(A/B)				
C-μg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	0.8321	0.7737	0.8661	0.02014	0.04027	4.84%	0.0%	409	493
2.9		5	0.9388	0.9151	0.9646	0.00883	0.01974	2.1%	-12.81%	555	591
4.1		5	0.9551	0.9153	0.9919	0.01406	0.03144	3.29%	-14.78%	585	612
5.8		5	0.9351	0.9279	0.9403	0.002448	0.005473	0.59%	-12.38%	622	665
8.4		5	0.8055	0.6897	0.9	0.04387	0.09809	12.18%	3.2%	552	687
12		5	0.07037	0.0283	0.1607	0.02621	0.05861	83.29%	91.54%	39	528
17.2		4	0	0	0	0	0		100.0%	0	325
Proportion	Normal Detail										
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8433	0.8661	0.7737	0.8455						
2.9		0.9646	0.9291	0.9528	0.9322	0.9151					
4.1		0.9322	0.9767	0.9919	0.9597	0.9153					
5.8		0.931	0.9366	0.9398	0.9279	0.9403					
8.4		0.6897	0.8947	0.7174	0.9	0.8258					
12		0.0303	0.0283	0.09917	0.03333	0.1607					
17.2		0	0	0	0						
Proportion	Normal Binomials	•									
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	113/201	97/201	106/201	93/201						
2.9		109/201	118/201	121/201	110/201	97/201					
4.1		110/201	126/201	122/201	119/201	108/201					
5.8		135/201	133/201	125/201	103/201	126/201					
8.4		100/201	136/201	99/201	108/201	109/201					
12		3/201	3/201	12/201	3/201	18/201					
17.2		0/201	0/201	0/201	0/201						

Report Date: 27 Oct-16 15:29 (p 5 of 5) **Test Code:** 3DF06D2F | 10-3916-6767

Bivalve Larval Survival and Development Test

Analysis ID: 16-9997-0667 Endpoint: Proportion Normal CETIS Version: CETISv1.8.7

Report Date: Test Code: 27 Oct-16 15:29 (p 1 of 5) 3DF06D2F | 10-3916-6767

Bivalve La	arval Sur	vival and D	evelopme	ent Test						SPA	WAR Syst	tems Center
Analysis II Analyzed:		3687-9098 Oct-16 15:28		dpoint:	Combined Prop Linear Regress		al		S Version:	CETISv1 Yes	.8.7	
Batch ID:	11-0	0713-8919	Те	st Type:	Development-S	Survival		Anal	yst: Mari	enne A Col	vin	
Start Date		May-11 20:0		otocol:	EPA/600/R-95/	,		Dilue		oratory Sea	water	
Ending Da		May-11 18:0		ecies:	Mytilis gallopro			Brine		Applicable		
Duration:	46h			urce:	Carlsbad Aqua	Tarm		Age:	na			
Sample ID		1579-3046		de:	7E1C7096			Clier		SEA		
Sample Da Receive D		May-11		aterial:	Copper sulfate Reference Toxi	ioont		Proje	ect: Sed	ment Copp	er Lools -	Round 1
Sample Ag				ource: ation:	Reference Tox							
Batch Not	e: SW				est. Overlying W		ed of 0.45µn	n filter labo	ratory seawa	ater diluted	to 30ppt w	rith Nano-
Linear Reg	gression	Options										
Model Fur	nction			Thres	hold Option	Threshold	Optimized	Pooled	Het Corr	Weighted	l	
Log-Norma	al [NED=/	A+B*log(X)]		Contro	l Threshold	0.491294	Yes	No	Yes	Yes		
Regressio	n Summ	ary										
Iters L	L	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	(α:5%)	
7 -3	3468	6943	6946	1.01	0.0467	0.9379	2.069	2.743	0.1140		ficant Lac	k of Fit
Point Esti	mates											
Level µ	g/L	95% LCL	95% UC	L								
	0.22	8.939	10.79	_								
Regressio	n Param	otors										
Parameter		Estimate	Std Erro	or 95% L	CL 95% UCL	t Stat	P-Value	Decision	(a:5%)			
Threshold		0.4315	0.01445		0.461	29.86	<0.0001		t Parameter			
Slope		21.41	4.828	11.55	31.27	4.435	0.0001	-	t Parameter			
Intercept		-21.62	5.177	-32.19	-11.04	-4.176	0.0002	Significan	t Parameter			
ANOVA Ta	able											
Source		Sum Squa	ares Me	an Squa	re DF	F Stat	P-Value	Decision	(α:5%)			
Model		1579.036	15	79.036	1	485.6	<0.0001	Significan	t			
Lack of Fit		23.54807		387017	4	2.069	0.1140	Non-Signi	ficant			
Pure Error		73.99361		345908	26							
Residual		97.54169	3.2	25139	30							
Residual A	Analysis											
Attribute		Method			Test Stat		P-Value	Decision	,			
Goodness-	-of-Fit	Pearson C	•		97.54	43.77	<0.0001	•	t Heterogeni	•		
Variances		Likelihood Mod Lever			96.95 nce 0.9946	43.77 2.573	<0.0001 0.4544	U	t Heterogeni	ty		
valiances		Shapiro-W			0.9642	0.9354	0.4344	Equal Var Normal Di				
	1						0.0070		ottibution			
Distribution	1	Anderson-		,		2.492	0.3454	Normal Di	stribution			
Distribution		Anderson-	Darling A2	2 Normalit		2.492		Normal Di	stribution			
Distribution Combined	l Proport	Anderson-	Darling A2	2 Normalit	y 0.4114	2.492 Calcu	lated Variat	Normal Di		%Effect	Δ	R
Distribution	l Proport Contr	Anderson- tion Normal	Darling A2 Summar Count	2 Normalit y Mean	y 0.4114 Min	2.492 Calcu Max	lated Variat Std Err	Normal Di e(A/B) Std Dev	CV%	%Effect	A 409	B 804
Distribution Combined C-μg/L 0	l Proport	Anderson- tion Normal	Summar Count	y Mean 0.5087	y 0.4114 Min 7 0.4627	2.492 Calcu	lated Variat	Normal Di		%Effect 0.0% -8.56%	409	B 804 1005
Distribution Combined C-µg/L	l Proport Contr	Anderson- tion Normal	Darling A2 Summar Count	2 Normalit y Mean	Min 7 0.4627 2 0.4826	2.492 Calcu Max 0.5622	lated Variat Std Err 0.02238	Normal Di e(A/B) Std Dev 0.04475	CV% 8.8%	0.0%		804
Combined C-μg/L 0 2.9	l Proport Contr	Anderson-	Summar Count 4	Normality Mean 0.5087 0.5522	Min 7 0.4627 2 0.4826 0.5373	2.492 Calcu Max 0.5622 0.602	Std Err 0.02238 0.02081	Normal Di e(A/B) Std Dev 0.04475 0.04654	CV% 8.8% 8.43%	0.0% -8.56%	409 555	804 1005
Combined C-µg/L 0 2.9 4.1	l Proport Contr	Anderson-	Summar Count 4 5	y Mean 0.508; 0.5522 0.582	Min 7 0.4627 9 0.5373 9 0.5124	2.492 Calcu Max 0.5622 0.602 0.6269	Std Err 0.02238 0.02081 0.01723	Normal Di e(A/B) Std Dev 0.04475 0.04654 0.03854	CV% 8.8% 8.43% 6.62%	0.0% -8.56% -14.43%	409 555 585	804 1005 1005
Combined C-µg/L 0 2.9 4.1 5.8	l Proport Contr	Anderson-	Summar Count 4 5 5 5	y Mean 0.5083 0.5522 0.6189	Min 7 0.4627 9 0.4826 1 0.5373 0 0.5124 0 0.4925	2.492 Calcu Max 0.5622 0.602 0.6269 0.6716	Std Err 0.02238 0.02081 0.01723 0.0283	e(A/B) Std Dev 0.04475 0.04654 0.03854 0.06328	CV% 8.8% 8.43% 6.62% 10.23%	0.0% -8.56% -14.43% -21.66%	409 555 585 622	804 1005 1005 1005

Report Date: Test Code: 27 Oct-16 15:29 (p 2 of 5) 3DF06D2F | 10-3916-6767

rval Survival and	Developme	nt Test					SPAWAR Systems Center
		•		•	nal	CETIS Version: Official Results:	CETISv1.8.7 Yes
Proportion Norm	al Detail						
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Lab Control	0.5622	0.4826	0.5274	0.4627			
	0.5423	0.5871	0.602	0.5473	0.4826		
	0.5473	0.6269	0.607	0.592	0.5373		
	0.6716	0.6617	0.6219	0.5124	0.6269		
	0.4975	0.6766	0.4925	0.5373	0.5423		
	0.01493	0.01493	0.0597	0.01493	0.08955		
	0	0	0	0			
	01-3687-9098 27 Oct-16 15 Proportion Norm Control Type	Proportion Normal Detail Control Type Rep 1 Lab Control 0.5622 0.5423 0.5473 0.6716 0.4975 0.01493	Proportion Normal Detail Rep 1 Rep 2 Lab Control 0.5622 0.4826 0.5423 0.5871 0.5473 0.6269 0.6716 0.6617 0.4975 0.6766 0.01493 0.01493	Control Type Rep 1 Rep 2 Rep 3 Lab Control 0.5622 0.4826 0.5274 0.5473 0.602 0.6617 0.602 0.6716 0.6617 0.6219 0.4975 0.6766 0.4925 0.01493 0.01493 0.0597	Control Type Rep 1 Rep 2 Rep 3 Rep 4 Lab Control 0.5423 0.5871 0.602 0.5473 0.5473 0.6269 0.607 0.592 0.6716 0.6617 0.6219 0.5124 0.4975 0.6766 0.4925 0.5373 0.01493 0.01493 0.01493 0.0597 0.01493	Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Lab Control 0.5423 0.5871 0.602 0.5473 0.4826 0.5473 0.6269 0.607 0.592 0.5373 0.6716 0.6617 0.6219 0.5124 0.6269 0.4975 0.6766 0.4925 0.5373 0.5423 0.01493 0.01493 0.0597 0.01493 0.08955	D: 01-3687-9098 27 Oct-16 15:28 Endpoint: Analysis: Combined Proportion Normal Linear Regression (MLE) CETIS Version: Official Results: Proportion Normal Detail Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Lab Control 0.5622 0.4826 0.5274 0.4627 0.5423 0.5871 0.602 0.5473 0.4826 0.5473 0.6269 0.607 0.592 0.5373 0.6716 0.6617 0.6219 0.5124 0.6269 0.4975 0.6766 0.4925 0.5373 0.5423 0.01493 0.01493 0.0597 0.01493 0.08955

Combined Proportion Normal Binomials									
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Lab Control	113/201	97/201	106/201	93/201				
2.9		109/201	118/201	121/201	110/201	97/201			
4.1		110/201	126/201	122/201	119/201	108/201			
5.8		135/201	133/201	125/201	103/201	126/201			
8.4		100/201	136/201	99/201	108/201	109/201			
12		3/201	3/201	12/201	3/201	18/201			
17.2		0/201	0/201	0/201	0/201				

Embryo Larval Bioassay

48-hour Development

- ^D roject:	SPAWAR

Sample ID: Reference Toxicant CuSO4

Test Species: M.galloprovincialis

Start Date: 5/3/2011

End Date: 5/5/2011

Random #	Number Normal	Number Abnormal	Technician Initials
1	103	8	6R
2	106	31	6R
3			
4	133	9	MC
5	125	8	6R
6	97	15	me
7	18	94	MC
8	Ø	74	HC
9	<i>p</i> 3	96	6R
10	47	0	Ш
11	122	· 1	HC-
12	108	(8)	NC
13	1360	ILO	MC
14	Ø	79	uc
15	110	8	MC
16	135	10	hic
17	109	4	MC
18	118	9	uc
19	8	90	il (
20	99	39	6R
. 21	16 pmc	79	ис
22	120	8	ис
23	Ø	82	MC
24	12	109	MC
25	119	5	MC
26	116	8	uc
. 27	109	L 23	MC
28	100	45	МС
29	121	<u> </u>	MC.
30	1210	3	MC
31	3	10.3	MC
32	INC. \$ 93	MC-III 17	MC
33	108	12	MC
34	113	21	HC
35	3	87	MC

QC Check:	Final Review:

Marine Chronic Bioassay

Project: SPAWAR

Sample ID: Copper Sulfate Reftox

Water Quality Measurements

Test Species: M.galloprovincialis

2000 Start Date/Time: 5/3/2011 End Date/Time: 5/5/2011

_					2011		7		***************************************	· · · · · ·			~	بريس	p	
			48	ā Q	<u> </u>	8.13	l _k	0:7:0	8.15		らいる	٥, د	000	<<		
Ho	nH (pite)	S 1 2	74	o o		8.09	Ş	0.07	0,70		8.11	11 0		5.10		
			0	さん		0 0 0 0	150		80.07	7, 4	~). ;	8,07	Į d	0.00		
vaen		10		ナド	1	()	7.		7.2		}~/	7.3	12	1 3		
Dissolved Oxvaen	(ma/L)	70		4		7	7	r -	7.3	ŗ	1.1	7.3	Ĺ	 		
Diss	-	O) ,	ţ o i	7 7	1	l	}	ار ب	7.3		7.4	7.4			
īē.		48	2	14.7	75		14.8	1	651	149	, 4,	15.2	23/	0.5		
Temperature	<u>(</u>)	24		65.3	15.4	i	15.6		156	V.		156	1,510	5		
		0		15.0	0.00		15.0		15.0	(7.2)		18.0	0 V			
		48		51.2	32,0		31.8	8	0.70	ر ن ر		31-5	<u>w</u> .8			**
Salinity	(ppt)	24		30.5	86.33		30.5	20.0	8.50	30.7		30.7	30.8			
		0		19.0	29.C		30.0	14	7.00	8.7		30.08	30.6			
Concentration	(%)			Lab Control	2.9		4.1	α		8.4		12	17.2			

24 0 Dilutions made by: איכ Ĭ, WQ Readings: Technician Initials:

84

Animal Source/Date Received:

Carlsbad Aquafarms 5/3/2011

Comments:

0 hrs:

24 hrs: _ 48 hrs: _

QC Check:

Final Review:

Appendix C

Sample Information

SAMPLE COLLECTION AND ARRIVAL LOG

F				54/4-//	-	_			80.49 MINI				.0170117	****				1	3					
		Temp. (°C)	N 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9	(0.1			- j	9 -	V 9	17.	2000	OLEMO TO TO	Par San	(A)	00		5-7:	\(\frac{1}{2}\)	5.0	mon.	100	
	Receipt at Lab	Time	0201	4-4-40	- >	0900				>	V 00-	このなんご						G (CALLES)	-					
		Date	3/23/40	4 wheelingships	->	4129111				7	6/14/11	1220		a.co.co.usca	CA AAAAAA	n Li dominino a dia			· wasterface of the				>>	
December	Necesser	By	C.S		7	îX				y	7	-5		Accorded to			ar hand and an a				5-Down	<u>ر</u>	لأسد	
	TITELL		(A)	, , , , , , , , , , , , , , , , , , , ,	->	Sedi	-			-	Sad	38									(milled) hours and any	-»	->	
	Į.	1emp. (⁻∪)	9.0	8.9	ç	J Z					7	o'h	4.0	4.0	13.8	139	13.2	13:01	13.5	3.5	12.6	しらら	3	
Samulino	9	lime	137	1403	42	1125	1235	1551	17	224	(00 <u>S</u>	1300	1200	(2-50	1127	8138	1010	1028	0925	1019	1233	1203	512	
	100	Date	2/24 11		€	4/27/2011			7	4/3/187	が作れて	10/2/1	· (magna, u romaño.		Place di Co.	**********	-elki tampa yana	-)~~	≫	
Sample ID			M3:1	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MEST	7503 - Builtsed in P. U. Sed. Project				プ	Sewilm Stal	12PINS 18	SPINS R	NOON 1	250	8503	1508	P304	PSIT	R10	m3.1	27.2	らなど	
Project			TUSU PIMBOL		→	7503 - Buillsed in	5000 rulk set.	1303 - cove sed	1508 - curesed.	PSON-CORESER.	Ck fals	BOS ANDOS							٠		\$.)	7	

Comments (B) Shange Verlied during shapment

Total Ammonia Analysis Marine Samples

Client: Internal - Cu Availability Study

Initial Measurements of Overlying

Water

Test Type: Sediment Toxicity Exposure

N x 1.22

		***************************************	J	1		N X 1.22	Language Control Control
	Sample	T	pH	Salinity	Nitrogen	Ammonia	Technician
Sample ID	Date	Test Day	(units)	(ppt)	(mg/L)	= (mg/L)=	Initials
Blank Spike (10 mg/L NH ₃)	NA	NA	NA	NA	9.8	12.0	ENF
Neanthes:					_		
Shelter Island	5/3/2011	0			0.6	6.1	
Naval Base SD	5/3/2011	0			0.4	0.5	l l
Neanthes - Bremerton PS03 🖔	5/3/2011	0			0.9	مادونون. د مادونون	
Neanthes - Bremerton PS09 🖔 🗸	5/3/2011	0			0.3	4	
Cu - Lab control	5/3/2011	0			0,9		
Cu - 100 mg/kg	5/3/2011	0			1,1	1.3	
Cu - 500 mg/kg	5/3/2011	0			0.7	0.9	
Cu - 4500 mg/kg	5/3/2011	0			1.2	1.5	
Ampelisca:					SEE		
Shelter Island	5/3/2011	0				HEIRVS	
Naval Base SD	5/3/2011	0			DATA		
Neanthes - Bremerton PS03	5/3/2011	0					
Neanthes - Bremerton PS09	5/3/2011	0					
Cu - Lab control	5/3/2011	0					
Cu - 100 mg/kg	5/3/2011	0					
Cu - 500 mg/kg	5/3/2011	0					
Cu-1500 mg/kg	5/3/2011	0	····				
Leptocheirus:		,		,			
Shelter Island	5/3/2011	0			0.4	0.5	
Naval Base SD	5/3/2011	0	,		0.3	0.4	
Neanthes - Bremerton PS03	5/3/2011	0			0.6	0.7	
Neanthes - Bremerton PS09	5/3/2011	0			ND	いフ	
Cu - Lab control	5/3/2011	0			ND	กอ	
Cu - 100 mg/kg	5/3/2011	0			0.5	0.6	
Cu - 500 mg/kg	5/3/2011	0			0.3	0.4	
Cu - 4500 mg/kg	5/3/2011	0			0,1	01	

QC Check: W ululu

Client: Internal - Cu Availability Study

Initial Measurements of Overlying Water

Test Type: Sediment Toxicity Exposure

N x 1 22

						N x 1.22	•
Sample ID	Sample Date	Test Day	pH (units)	Salinity (ppt)	Nitrogen (mg/L)	Ammonia (mg/L)	Technician Initials
Blank Spike (10 mg/L NH ₃)	NA	NA	NA	NA	9.8	12.0	ER
Bivalve:							
Shelter Island - Core	5/3/2011	0			ND	ND	
Shelter Island - Hom.	5/3/2011	0			ND	ND	
Naval Base SD - Core	5/3/2011	0			ND	ND	
Naval Base SD - Hom.	5/3/2011	0		60,7	NIN	6.9	
Bivalve - Bremerton PS03 - Core	5/3/2011	0			1.8	2.2	
Bivalve - Bremerton PS03 - Hom.∜\	5/3/2011	0			0.2	0.2	
Bivalve - Bremerton PS09 - Core 🗞	5/3/2011	0			0.4	0.5	
Bivalve - Bremerton PS09 - Hom. 1	5/3/2011	0			1, 1	1.3	
Cu - Lab control	5/3/2011	0			0.4	0.5	
Cu - 100 mg/kg	5/3/2011	0			0.9		
Cu - 500 mg/kg	5/3/2011	0			6.3	04	
Cu - ‡ 500 mg/kg	5/3/2011	0			10-15	09	
					0.7		~
							•
iAmpelisca controlscei Spillo	5/4/2011	ų.			1.3	1.6	ue
Spile				•	10.0	12.2	pre
							•
					-		
							·········

QC Check: Mblelelu

Total Copper Analysis Marine Samples

Client: Internal - Cu Availability Study

Pre-Testing Measurements of Overlying Water within Neanthes Test Chambers
Test Type: Sediment Toxicity Exposure

Sample ID	Sample Date	Test Day	pH (units)	Total Copper (mg/kg)	Technicia n Initials
Blank Spike (10 mg/L NH ₃)	NA	NA	NA		
Lab control	5/2/2011		8.14	20	me
100 mg/kg	5/2/2011		8.24	ď	1
300 mg/kg	5/2/2011		8.28	מט	
500 mg/kg	5/2/2011		8.24	4	
1500 mg/kg	5/2/2011		8.24	34	
4500 mg/kg	5/2/2011		8.20	234	1
Lab control	5/3/2011				
100 mg/kg	5/3/2011				
300 mg/kg	5/3/2011				
500 mg/kg	5/3/2011				
1500 mg/kg	5/3/2011				
4500 mg/kg	5/3/2011				,,
Naval Base SD) 4	5 3 20 1	0		5	
Shelter Island (SD) 19503 (131)				니	-
PSUA (B2)), Homogenized	J	7		11	MC

QC Check: _			
	5/2/11	SW 1500 -18	' - 10

Total Ammonia and Copper Analysis Marine Samples

Client: Internal - Cu Availability Study

Final Measurements of Overlying Water

Test Type: Sediment Water Interface Toxicity Exposure

N x 1.22

				N x 1.22		
Sample ID	Sample Date	Test Day	Nitrogen (mg/L)	Ammonia (mg/L)	Copper (µg/L)	Technician Initials
Blank Spike (10 mg/L NH ₃)	NA	NA	9.3	11.3	100	uc.
Bivalve:					-	1
Water Only Control	5/5/2011	2	0.7	0.9	ND	
Shelter Island - Core	5/5/2011	2	0.4	0.5	NA	
Shelter Island - Hom.	5/5/2011	2 \	8205		20	1
Naval Base SD - Core	5/5/2011	2	0.2	0.2	なり	
Naval Base SD - Hom.	5/5/2011	2	0.0	0.0	S	İ
Bivalve - Bremerton PS03 - Core	5/5/2011	2.	0,8	l. D	ND	
Bivalve - Bremerton PS03 - Hom.(3)	5/5/2011	2	N.D	0.0	S	
Bivalve - Bremerton PS09 - Core∯V	5/5/2011	2	0.3	0.4	an	
Bivalve - Bremerton PS09 - Hom.∜	5/5/2011	2	0.9	١, ١	ND.	
Cu - Lab control	5/5/2011	2	1.7	2.(20	
Cu - 100 mg/kg	5/5/2011	2	0.5	.6.Co	N)	
Cu - 300 mg/kg	5/5/2011	2	1.0	4.51.2	QU	1
Cu - 500 mg/kg	5/5/2011	2	2.0	2.4	υD	\
Cu - 1500 mg/kg	5/5/2011	2	0.8	٥.١	ND	1
Cu - 4500 mg/kg	5/5/2011	2	1.0	1.2	113	7
			•			

ND= Non Detect

QC Check: W WWW.

Total Ammonia and Copper Analysis Marine Samples

Client: Internal - Cu Availability Study

Final Measurements of Overlying Water

Test Type: Sediment Toxicity Exposure

N x 1.22

Processing to the same of the		Fac challed as the restrict	Section Commence (Co.	TOUR DESCRIPTION		N x 1.22	
Sample ID	Sample Date	Test Day	pH (units)	Salinity (ppt)	Nitrogen (mg/L)	Ammonia (mg/L)	Technician Initials
Blank Spike (10 mg/L NH ₃)	NA	NA	NA	NA	8.0	9.8	uc
Leptocheirus:						,	1
Shelter Island	5/13/2011	10			6.3	0.4	
Naval Base SD	5/13/2011	10			0.2	0.2	
Bremerton 1 \$553	5/13/2011	10			1.3	1.6	
Bremerton 2 PSOA	5/13/2011	10			1.3	1.0	
Cu - Lab control	5/13/2011	10			0.00	6.7	
Cu - 100 mg/kg	5/13/2011	10			ND	ND	
Cu - 300 mg/kg	5/13/201 1	10			0.5	0.4	
Cu - 500 mg/kg	5/13/201 1	10			0.2	0.2	
Cu - 1 500 mg/kg	5/13/2 011	10			0.4	٥.<	
Cu - 4500 mg/k ₍ :	5/13/2 011	10			0.0	0.0	
Ampelisca:	.						
Shelter Island	5/13/2011	10			0,9		
Naval Base SD	5/13/2011	10			0.1	. 1	
Bremedon 1	5/13/2011	10	1	4	GUPY	NJ	
Bremotton 2 1504	5/13/2011	10	<i></i>		ND	NO	
Cu - Lab contro	5/13/2011	10	<u> </u>		0.5	2.0	
Cu - 100 mg/kg	573372 011	10			20	ND	
Cu - 300 mg/kg	5/13/2 011	10			0.7	0.9	
Cu - 500 mg/kg	7:3/20 11	10			0.7	0.9	
Cu = 15/00 mg/F)	7 30011	10	1		0.2	0.20	
Cu - ∂! ∩0 mg/k :	. 171 720 11	10	Y	,	0.7	0.0	
Ampelson hour sediment control	. 574.770 311	10			15	1.8	ط
Ech Lt & Ca-	Shohr		•		4.4	<u> </u>	- K-(
500 500 C.,	Ballo M. P. Wood, S. W.				2.9	- 0 /97	
Edta 1500Ca					2-2-	4,1.	
Edn 1500Co. Edn Spille	حــــ				9.7	-tt-8	and the same of th

accion Ill 6/4/11

look Hand of Early Oder

Total Ammonia Analysis Marine Samples

Client: Internal - Cu Availability Study

Final Measurements of Pere Water

Test Type: Echaustorius 10-day Termination Day (16May11)

N x 1.22

Sample ID Date Test Day (mg/L) (mg/L) (µg/L) Initials					N x 1.22		
Shelter Island - Core St/16/2011 10 NA NA NA NA NA NA NA N				Company of the second of the s	A STATE OF THE PARTY OF THE PAR	Copper	Technician
Water Only Control 5/16/2011 10 NA - Shelter Island - Core 5/16/2011 10 28 3.4 Shelter Island - Hom. 5/16/2011 10 No. Jample Naval Base SI - Core 5/16/2011 10 0.7 0.9 Naval Base SD - Hom. 5/16/2011 10 4/.5 5.5 Bremerton PS03 - Core 5/16/2011 10 2.4 2.9 Bremerton PS03 - Hom. 5/16/2011 10 4/.4 5.4 Bremerton PS09 - Core 5/16/2011 10 4/.4 5.4 Bremerton PS09 - Ilom. 5/16/2011 10 4/.4 5.4 Cu - Lab control. 5/16/2011 10 5/.4 4/.4 5.4 Cu - 100 mg/k. 5/16/2011 10 3.8 4/.4 4/.4 5.9 Cu - 500 mg/kc 5/16/2011 10 3.8 4/.4 5.4 Cu - 1500 mg/kg 5/16/2011 10 5/.8 1.1	Sample ID	Date	Test Day	(mg/L)	(mg/L)	(µg/L)	Initials
Shelter Island - Core	Blank Spike (10 mg/L NH ₃)	NA	NA	9.6	economic interesting		618
Shelter Island - Hom.	Water Only Control	5/16/2011	10	NA	ones*		
Shelter Island - Hom. S/16/2011 10 No Sample S/16/2011 10 No Sample S/16/2011 10 No Sample S/16/2011 10 No Sample S/16/2011 10 S/16/2011 10	Shelter Island - Core	5/16 /2011	10	2.8	3.4		
Naval Base SD - Hom. 5/16/2011 10 4/5 5/5 Bremerton PS03 - Core ₹5€ 5/16/2011 10 2.4 2.9 Bremerton PS03 - Hom. ₹5 5/16/2011 10 4.9 5.4 Bremerton PS09 - Core ₹5€ 5/16/2011 10 2.4 2.4 Bremerton PS09 - Hom. ₹5/16/2011 10 2.4 2.4 2.4 Cu - Lab control. 5/16/2011 10 2.4 2.4 2.4 2.4 Cu - 100 mg/kg 5/16/2011 10 3.8 4.4 4.4 2.4	Shelter Island - Hom.	5/16/2011	10		10le		A. Carriera
Naval Base SD - Hom. 5/16/2011 10 4/5 5/5 Bremerton PS03 - Core ₹5€ 5/16/2011 10 2.4 2.9 Bremerton PS03 - Hom. ₹5 5/16/2011 10 4.9 5.4 Bremerton PS09 - Core ₹5€ 5/16/2011 10 2.4 2.4 Bremerton PS09 - Hom. ₹5/16/2011 10 2.4 2.4 2.4 Cu - Lab control. 5/16/2011 10 2.4 2.4 2.4 2.4 Cu - 100 mg/kg 5/16/2011 10 3.8 4.4 4.4 2.4	Naval Base St Core	5/16 /2011	10	0,7	0.9		4
Bremerton PS03 - Core ₹5€€ 5/16/2011 10 3.4 2.9 Bremerton PS03 - Hom. ₹5 5/16/2011 10 4.4 5.4 Bremerton PS09 - Core ₹5 5/16/2011 10 4.5 4.4 5.4 Bremerton PS09 - Hom. ₹5/16/2011 10 4.5 4.4 4.4 5.4 Cu - Lab control 5/16/2011 10 5.8 4.4<	Naval Base St) - Hom.	5/16/2011	10	4.5			
Bremerton PS03 - Hom. ♥ 5/16/2011 10 ₱ 5/16/2011 10 <	Bremerton PS03 - Core 7508\	5/1 6/2011	10	2.4	29		
Bremerton PS09 - Hom. 57 16/2011 10 no sample - Cu - Lab control 57 16/2011 10 67 7 - Cu - 100 mg/kg 57 16/2011 10 3.8 4.0 Cu - 300 mg/kg 57 16/2011 10 4.8 5.9 Cu - 500 mg/kg 57 16/2011 10 3.8 4.0 Cu - 1500 mg/kg 57 16/2011 10 3.8 4.0	Bremerton PS03 - Hom. 🕅	5/16 /2011	10	4,4	5.4		
Bremerton PS 9 - Hom. 5/16/2011 10 no sample - Cu - Lab control 5/16/2011 10 6// 7.4 Cu - 100 mg/kg 5/16/2011 10 3.8 4.0 Cu - 300 mg/kg 5/16/2011 10 4.8 5.9 Cu - 500 mg/kg 5/16/2011 10 3.8 4.0 Cu - 1500 mg/kg 5/16/2011 10 5.8 7.1		5/16 /2011	10	no sam	ole -		No. of Street, or other Property of Street, or other Property or o
Cu - Lab control 5/16/2011 10 6/1 7.4 Cu - 100 mg/hg 5/16/2011 10 3.8 4.0 Cu - 300 mg/kg 5/16/2011 10 4.8 5.9 Cu - 500 mg/kg 5/16/2011 10 3.8 4.0 Cu - 1500 mg/kg 5/16/2011 10 5.8 1.1	Bremarton PS09 - Hom. 5V	5/16 /2011	10	no ser	roll -		
Cu = 3600 mg/kg 5/16/2011 10 4.8 5.9 Cu = 500 mg/kg 5/16/2011 10 3.8 4.0 Cu = 1600 mg/kg 5/16/2011 10 5.8 7.1	Cu - Lab control	5/16 /2011	10		7.4		
Cu - 500 mg/ke 5/16/2011 10 3, 8 4, 0 Cu - 1600 mg/kg 5/16/2011 10 5, 8 7, 1		5/16 /2011	10	3.8	4.6		- Domith
Cu - 1500 mg/sg : 5/16/2011 10 5 3 1.1	Cu = 000 mg/kg	5/16 /2011	10	4.8	5.9		New York
	Cu - 500 mg/k∉	5/16 /2011	10	3.8	4.0		A constituent of the constituent
2u - 8500 mg/ s		5/16 /2011	10	5.8	-1.		- Contraction
	<u>Cu - 4000 mg/ is</u>	:/\6 /2011	10	5.8	7.1		4
	; 				,		
	;			· ·			
	:						
	<u> </u>						
	<u> </u>						

QC Check: We whele 2011

Ech-10 day - day 10

Total Anni-

and Copper Analysis

Marine Sa-

Client: Internal - Cu Availability Study

Final Measurements of Overlying Water

Test Type: Sediment Toxicity Exposure

							N x 1.22	
		Sam ple =		рН	Salinity	Nitrogen		Technician
	ple ID	Date	Test Day	(units)	(ppt)	(mg/L)	(mg/L)	Initials
	⊕ mg/L N⊞₃)	NA	NA	NA	NA	9.8	12.0	BS J
Nearthes	<u> </u>							
Shelter lak	<u>57</u>	5/31/2011	28			0.3	0.37	
Naval i' is	NB	5/31 /20 11	28			007	0.85	
Bremanian 🌹	503 BI	5/31/2011	28			-0,4	ND	
Bremert in (309 132	5/3 1/2011	28			01	0.12	
Cu = L c	LC_	5/31 /2011	28			-01	ND	
Ou - 10 j	100	5/31/2011	28			-0.2	ND	
Ou - (t - p	·	5/31 /2011	28			-0d	ND	
Cu-berry	500	1/2011	28			-0,1	NP	
Du - I	1500	5 51/2011	28			-0.1	ND	
Miller Jan	4500	1/2011	28			1.0	1.22	
Bla	NL		1			-0.1	ND	V
		·						
: }			I					
: :								
			i					
	· .							
:							, <u> </u>	
						-		
-								
	,							

lle 6/10/2011

Nearths - 28 day - day 28

Appendix D

Chain-of-Custody Forms

Systems Center San Diego

ENVIRONMENTAL SCIENCES AND
APPLIED SYSTEMS BRANCH, CODE 71750
53605 HULL STREET
SAN DIEGO, CA 92152-5000

Chain of Custody Record

Date: 4/29/2011

ام Page

Project Title/Project Number:	In Sedimond Project		Project Leader:	
Remarks/Air Bill:	7		Contact:	
Sampler(s): (Signature)			Contact Tel:	
Tel:	Fax:	Email:	Requested Analyses	ses/
Special Instructions:				
* * * * * * * * * * * * * * * * * * *			Inos	
Field Sample Identification	Date Time	e Matrix Type Temp (°C)	svog	
1803 - CENT SOMMO (S)	4127 2010 1050	Sediment	2	
PSOB-CONPSCIMPLE (5)	4/27/2018 NR			
_	14/27/2011 1720			
1803- bulk saniole (1)	14127 /20VOII 1125			-770 1770 (410 10-10
PS-09- Will Strange (-)	لو	}	7	
	4/27/2011 1235	C	2	
	-			
Relinquished by: (Signature)	Received	ed fly: (Signature)	Date:	Time: CACC
Relinquished by: (Signature)	Received	ed by: (Signature)	Date:	Time:

Appendix E

Glossary of Qualifier Codes

Glossary of Qualifier Codes:

- Q1 pH out of recommended range; refer to CAR
- Q2 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q3 Temperatures out of recommended range; no action taken, test terminated same day
- Q4 Sample aerated prior to initiation or renewal
- Q5 Salinity out of recommended range; refer to QA section of report
- Q6 Spilled test chamber/ Lost test animal
- Q7— Instrumentation Error/Failure; refer to CAR
- Q8 Inadequate sample volume, 50% renewal performed
- Q9 Inadequate sample volume, no renewal performed
- Q10 Sample out of holding time; refer to QA section of report
- Q11 Refer to QA section of report for explanation
- Q12 Supplemental information is footnoted
- Q13 Test initiated with an incorrect number of test organisms
- Q14 Replicate(s) not initiated; excluded from data analysis
- Q15 Survival counts not recorded due to poor visibility or heavy debris
- Q16 Test aerated due to dissolved oxygen levels dropping below 4.0 mg/L
- Q17 Test initiated with aeration due to an anticipated drop in dissolved oxygen
- Q18 Airline obstructed or fell out of replicate and replaced, drop in dissolved oxygen occurred
- Q19 Animals out of appropriate age range at test initiation
- Q20 Readings not taken, tech error
- Q21 Organisms in replicate not counted, tech error
- Q22 Dissolved oxygen above recommended range, but remained within the 100% ±10% saturation requirement