
Results and Discussion 
DGT deployments from 14 days to 1 day showed linear uptake (Fig 3a), while the Relative Percent Difference (RPD) of field duplicates (Table 1) and detection limits  
(Table 2) varied by deployment period. The trends of metal uptake at each monitoring station over the course of 5 sampling campaigns is shown for Cu, Pb, and Zn (Fig 3b).  
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Figure 3. (a) Analyte sensitivity when moving from 14 days to 1 day deployment time, displayed as M (metal resin-1) (n 1-day = 24; n 3, 4, and 14-day = 32; n 7-day = 64); 
(b) CDGT at monitoring stations during 5 campaigns (03/07/16-03/23/16; 08/24/16-09/08/16; 11/28/16-12/12/16; 03/16/17-03/29/17; 08/16/17-08/29/17), where 14 day CDGT 
is signified by bars grouped by station and chronological from left to right. Colored lines represent variation captured within the 14 day period. 
 

Table 1. Field reproducibility* expressed as duplicate RPD between samplers.         Table 2. CDGT detection limits*. 
 
 
 
 
 
 
 
 

*Reproducibility at ambient labile levels of: 0.0655-0.901 µg L-1 Cu;  *DGT detection limits were determined as 3 times the standard deviation of 8 blank replicates,  
  0.00260-0.0136 µg L-1 Pb; 0.294-16.2 µg L-1 Zn.     of the Chelex layer weighted by exposure duration and temperature, after blank subtraction.  
 

Based on the results from DGTs deployed over different intervals spanning continuous deployments of 3-14 days and rainfall events of 0.4 – 3.2 inches within a 24 hr 
period, it was determined that reproducibility was affected by mass loading rate (time to equilibrium), which was proportional to free ion concentration, and presence of 
biofouling, which can both increase the diffusive boundary thickness or act as a transport catalyst. Biofouling was only observed during the March 2016 campaign, and was 
likely due to  sunlight and increased algal growth on the sampler. Typical DGT surface cleanliness was improved (Fig. 4) when the DGTs were oriented downward.  
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Introduction 
As part an ambient monitoring program being conducted for the Puget 
Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF) 
at Naval Base Kitsap (NBK) Bremerton in Sinclair and Dyes Inlets of the 
Puget Sound (Fig. 1), receiving waters of the Inlets are routinely monitored 
for trace metals and toxicity to assess water quality status, track progress in 
achieving water quality goals, and demonstrate protection of aquatic life.   
 
Recently, aqueous metal bioavailability using diffusive gradient thin-film 
(DGT) passive samplers has been incorporated into the monitoring 
program. The DGT samplers are selective for free and weakly complexed 
metal species, allowing uptake to mimic diffusion limited bioavailability1. 
This provides a monitoring solution by which episodic events are captured 
that provides a better representation of the potential for biological effects. 
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Time (d) Cu Pb Zn 
1 15±17% 128±59% 70±48% 

3,4 11±13% 36±33% 70±52% 
7 7±7% 28±29% 53±48% 

14 7±5% 12±11% 52±31% 

Time (d) Cu Pb Zn 
1 0.0492 0.00958 1.06 

3,4 0.0164 0.00319 0.352 
7 0.00702 0.00137 0.151 

14 0.00351 0.000685 0.0755 

Figure 4. DGTs recovered after 14 days. 

Figure 1.  DGT deployment locations  within Sinclair Inlet, NBK 
Bangor, and reference locations in surrounding waters. 

The relationship between  metal accumulated by the resin to the 
concentration in solution (CDGT) is calculated as2: 
 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = [
𝐶𝐶𝑒𝑒 𝑉𝑉𝑔𝑔 + 𝑉𝑉𝑒𝑒

𝑓𝑓𝑒𝑒
]∆𝑔𝑔/𝐷𝐷𝐺𝐺𝐴𝐴𝐴𝐴 

Where:  
Ce is the concentration metal eluted from resin,  
Vg is the volume of the resin,  
Ve is the volume of HNO3,  
fe is the elution efficiency,  
Δg is the thickness of the diffusional path,  
DG is the temperature diffusion coefficient,  
A is the area exposed to seawater, and  
t is the deployment time. 

DGTs were purchased from DGT® Research, Lancaster, UK. The 
device consists of a plastic housing that holds the 0.40 mm 
Chelex layer, a 0.78 mm agarose cross-linked polyacrylamide 
(APA) hydrogel, and a 0.14 mm polyethersulphone membrane 
with an exposure area of 3.14 cm2 (Fig. 2).  

Figure 2. Components of a DGT device. 

Conclusions 
• Cu: CDGT displayed excellent results at all deployment times between 1 and 14 days, showing high resolution of labile metal 

concentrations over varying spatial and temporal scales. 
• Pb: Due to very low ambient concentrations, CDGT  required deployment times >4 days. 
• Zn: CDGT results were best at deployment times ≥7 days. Zn diffusion is affected by a combination of Chelex selectivity, kinetics of 

dissolved organic matter (DOM), gel purity, and proximity to sources3,4. Reproducibility will improve if ambient levels approach 
regulatory thresholds.  

• The ability to conduct constant surveillance of bioavailable metals in marine and fresh water environments under varying 
environmental conditions greatly improves the assessment of potential ecological effects from exposure to metals.  

• DGT deployments allows for cost-effective monitoring of best management practice (BMP) performance  
• Future research should focus on rigorous comparison of labile species (CDGT) to bioavailability (toxicity exposure levels) to gain 

regulatory acceptance of CDGT values for protection of beneficial uses.  
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