

Assessing 21st Century contaminants of concern using integrative passive sampling devices to obtain more meaningful and cost effective data on impacts from stormwater runoff

G. Rosen¹, R.K. Johnston¹, J. Strivens², N. Schlafer², J. Brandenberger², N. Hayman¹, M. Colvin¹, C. Katz¹, E. Arias¹, J. Belden³, M. Aylward⁴, R. Lee⁴, H. Jennings⁵, M. Jabloner⁵

¹Space and Naval Warfare Systems Center Pacific, San Diego, CA; ²Pacific Northwest National Laboratory, Sequim, WA; ³Oklahoma State University, Stillwater, OK; ⁴Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, WA; ⁵Naval Facilities Engineering Command Northwest, Bangor, WA

INTRODUCTION

- Grab (and composite) stormwater samples may not be representative of stormwater impacts to the receiving environment, as they may miss the 'pulse' of contaminants.¹
- Total recoverable metal concentrations used in compliance monitoring are not biologically meaningful for ecological effects
- Composite autosampling has limitations (reliability, cost)
- Integrative passive sampling with Diffusive Gradients in Thin film (DGT) and Polar Organic Chemical Integrative Samplers (POCIS) can provide cost-effective continuous monitoring
- DGTs are being evaluated for end-of-pipe monitoring and value towards assessment of best management practices (BMP) at Naval Base San Diego (NBSD)
- DGTs and POCIS were deployed during ambient monitoring at nearshore locations at Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS&IMF), Naval Base Kitsap (NBK) and reference locations.

DGT² samplers provide a time-averaged concentration of labile (biologically available) metal concentrations following diffusion through a gel layer and permanent binding to a resin layer (Chelex-100).

Flame Retardant

Common Stimulant

Equilibrium - 0.74 L/POCIS

0.14

0.12

1.7

0.33

POCIS³ sample weakly hydrophobic (log K_{ow} ≤4) organic chemicals that bind to a polymeric (hydrophilic-lipophilic-balanced; HLB) sorbent sandwiched between polyethersoulfone (PES) membranes.

Analytical quantitation level (QL, ng extracted from 3 POCIS) and relative stand deviation (RSD) of 6 replicates for analytes of interest.

	(1.102) of o replicati			
			Percent	
Analyte	Category	QL	Spiked	RSD
↓ 1	↓ ↑	*	Recove *	▼
Estrone	EDC - Hormone	<10	75.38%	3.63%
Octinoxate	EDC - Sunscreen	<5	84.63%	3.37%
TCEP	EDC Flame Retardant	<10	101.12%	6.19%
Caffeine	Household	<15	92.20%	6.30%
Cotinine	Household	<5	80.07%	7.99%
DEET	Household - bug repelant	<5	98.13%	4.46%
Bisphenol a	Household - plastic resin	<10	84.12%	9.40%
Nonylphenol	Hydrocarbon - 1 ring	<10	84.47%	4.57%
Fluoranthene	Hydrocarbon - PAH 4 rings	<5	81.07%	4.81%
Triclosan	Medicine - Antibiotic	<10	76.48%	5.03%
Acetaminophen	Medicine - pain	<10	85.72%	4.45%
Ibuprofen	Medicine - pain	<10	90.03%	3.39%
Metformin	Medicine- diabetes	<10	53.48%	20.12%
Carbomezapine	Medicine - seziure	<15	94.10%	8.45%
Galaxolide	Perfume	<5	80.22%	9.31%
Musk Ketone	Perfume	<5	73.43%	9.98%
Tonalide	Perfume	<5	72.53%	11.38%

RESULTS: San Diego Bay, CA

Linear loading of copper on to DGT Chelex-100 resin between 1.5-24 h durations in copper solutions. Shows detectable metal loading during short pulses.

Comparison of first half and second half of ~24 hr storm in comparison with DGT samplers placed for full storm.

Application of a unique DGT approach for real time monitoring of metals in storm drains (above left) in short term (≤ 24 h) exposures at two impervious sites at Naval Base San Diego⁴ with focus on BMPs (above right).

RESULTS: Puget Sound, WA

Mass accumulation on POCIS following sampling from sites in Sinclair Inlet and nearby reference sites during Feb. - Mar. 2017 for household chemicals, pharmaceuticals, fragrances, and endocrine disrupting compounds.

DYOTS POPIPD PS03 PS04 PS09 PS11 PS06 PS08 PS16

Stations (above) within Naval Base Kitsap in Sinclair Inlet and nearby reference locations with varying landuse and runoff regimes (below).

Jurisdiction	Landuse Ru	StationID	
NBK-BREM	Urban/Industrial	Marine/Nearshore	PS03
NBK-BREM	Urban/Industrial	Marine/Nearshore	PS04
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS06
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS08
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS09
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS11
PSNS&IMF	Urban/Industrial	Marine/Nearshore	PS16
Silverdale Port District	Urban/Commercial	Marine/Nearshore	DYOTS
Illahee Port District	Rural/Residential	Marine/Nearshore	POPIPD
NBK-Bangor	Rural/Industrial	Freshwater/Lake	BLAKE
Bainbridge Island	Rural/Residential	Freshwater/Stream	MURCRK
Bainbridge Island	Urban/Commercial	Marine/Nearshore	EAGLE

REFERENCES

- 1. Rosen G. and Johnston RK, 2015. Passive Sampling for Stormwater Sampling and Illicit Discharge Investigations, NESDI Project #523.
- 2. Davison, W. (Ed.), (2016). <u>Diffusive Gradients in Thin-films for Environmental Measurements</u>. Cambridge University Press.
- 3. Alvarez DA, 2010. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies: U.S. Geological Survey, Techniques and Methods 1–D4, 28 p.
- 3. Katz, C., 2017. Evaluation Of Low Impact Development Implementation, NEDSI Project #497.

CONCLUSIONS

- Integrative passive samplers show promise towards biologically relevant exposure/assessment of stormwater discharges and associated contaminants of concern in receiving water monitoring.
- Highly sensitive, reproducible results that support trace level changes in metal availability (DGT) and weakly hydrophobic (POCIS) contaminants in a marine estuary
- End of pipe sampling promising, but requires additional work to address possible issues associated with low ionic strength rainwater and highly dynamic stormwater discharges
- Passive sampling devices provide supplemental data to reduce costly traditional monitoring
- Surveillance monitoring with passive samplers can be used to finger print likely sources of contamination

